首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Non-linear boundary value problems for inelastic isotropic homogeneous incompressible bending plate, within the range of J2-deformation theory, are considered. An existence of the weak solution of the non-linear problem with clamped boundary condition is obtained in H2(Ω) by using monotone operator theory and Browder-Minty theorem. For linearization of the non-linear problem a monotone iteration scheme is constructed. It is shown that the sequence of potentials obtained from the sequence of approximate solutions (i.e. iterations), is a monotone decreasing one. Convergence of the iteration process in H2-norm is proved by using the convexity argument. Numerical solutions, based on finite-difference scheme, are given for linear bending problems with rigid clamped as well as simply supported boundary conditions. Further numerical examples are presented to illustrate the convergence of approximate solutions and monotonicity of the potentials as applied to the non-linear problems.  相似文献   

2.
We study the long-time stability of shock-free solutions of hyperbolic systems of conservation laws, under an arbitrarily large initial disturbance in L 2L . We use the relative entropy method, a robust tool which allows us to consider rough and large disturbances. We display practical examples in several space dimensions, for scalar equations as well as isentropic gas dynamics. For full gas dynamics, we use a trick from Chen [1], in which the estimate is made in terms of the relative mechanical energy instead of the relative mathematical entropy.  相似文献   

3.
In the works of Pericak-Spector and Spector (Arch Rational Mech Anal. 101:293–317, 1988, Proc. Royal Soc. Edinburgh Sect A 127:837–857, 1997) a class of self-similar solutions are constructed for the equations of radial isotropic elastodynamics that describe cavitating solutions. Cavitating solutions decrease the total mechanical energy and provide a striking example of non-uniqueness of entropy weak solutions (for polyconvex energies) due to point-singularities at the cavity. To resolve this paradox, we introduce the concept of singular limiting induced from continuum solution (or slic-solution), according to which a discontinuous motion is a slic-solution if its averages form a family of smooth approximate solutions to the problem. It turns out that there is an energetic cost for creating the cavity, which is captured by the notion of slic-solution but neglected by the usual entropic weak solutions. Once this cost is accounted for, the total mechanical energy of the cavitating solution is in fact larger than that of the homogeneously deformed state. We also apply the notion of slic-solutions to a one-dimensional example describing the onset of fracture, and to gas dynamics in Langrangean coordinates with Riemann data inducing vacuum in the wave fan.  相似文献   

4.
Exact mathematical analyses are presented for interface crack between dissimilar elastic-plastic materials. The deformation theory of plasticity is used. For two kinds of boundary conditions on crack faces: (1) traction free and (2) frictionless contact, the asymptotic separable solutions of the HRR type with full continuity are obtained, which exist only for special mixity parameterM p. For any assignedM p, the separable solutions of the HRR type which contained weak discontinued line are further obtained. All of our results not only satisfy the continuity of displacements and that of tractions on the interface, but also they are free of oscillatory singularity and interpenetration of crack faces.This investigation is supported by the National Natural Science Foundation of China  相似文献   

5.
Kinetic relations and the propagation of phase boundaries in solids   总被引:6,自引:0,他引:6  
This paper treats the dynamics of phase transformations in elastic bars. The specific issue studied is the compatibility of the field equations and jump conditions of the one-dimensional theory of such bars with two additional constitutive requirements: a kinetic relation controlling the rate at which the phase transition takes place and a nucleation criterion for the initiation of the phase transition. A special elastic material with a piecewise-linear, non-monotonic stress-strain relation is considered, and the Riemann problem for this material is analyzed. For a large class of initial data, it is found that the kinetic relation and the nucleation criterion together single out a unique solution to this problem from among the infinitely many solutions that satisfy the entropy jump condition at all strain discontinuities.  相似文献   

6.
The Continuous Coagulation-Fragmentation¶Equations with Diffusion   总被引:5,自引:0,他引:5  
Existence of global weak solutions to the continuous coagulation-fragmentation equations with diffusion is investigated when the kinetic coefficients satisfy a detailed balance condition or the coagulation coefficient enjoys a monotonicity condition. Our approach relies on weak and strong compactness methods in L 1 in the spirit of the DiPerna-Lions theory for the Boltzmann equation. Under the detailed balance condition the large-time behaviour is also studied.  相似文献   

7.
We present a theory of very long waves propagating on the surface of water. The waves evolve slowly, both on the scale ε (weak nonlinearity), and on the scale, σ, of the depth variation. In our model, dispersion does not affect the evolution of the wave even over the large distances that tsunamis may travel. We allow a distribution of vorticity, in addition to variable depth. Our solution is not valid for depth=O(ε4/5); the equations here are expressed in terms of the single parameter ε2/5σ and matched to the solution in deep water. For a slow depth variation of the background state (consistent with our model), we prove that a constant-vorticity solution exists, from deep water to shoreline, and that regions of isolated vorticity can also exist, for appropriate bottom profiles. We describe how the wave properties are modified by the presence of vorticity. Some graphical examples of our various solutions are presented.  相似文献   

8.
This paper is devoted to constructing a general theory of nonnegative solutions for the equation called “the fast-diffusion equation” in the literature. We consider the Cauchy problem taking initial data in the set ?+ of all nonnegative Borel measures, which forces us to work with singular solutions which are not locally bounded, not even locally integrable. A satisfactory theory can be formulated in this generality in the range 1 > m > m c = max {(N? 2)/N,0}, in which the limits of classical solutions are also continuous in ? N as extended functions with values in ?+∪{∞}. We introduce a precise class of extended continuous solutions ? c and prove (i) that the initial-value problem is well posed in this class, (ii) that every solution u(x,t) in ? c has an initial trace in ?+, and (iii) that the solutions in ? c are limits of classical solutions. Our results settle the well-posedness of two other related problems. On the one hand, they solve the initial-and-boundary-value problem in ?× (0,∞) in the class of large solutions which take the value u=∞ on the lateral boundary x∈??, t>0. Well-posedness is established for this problem for m c < m > 1 when ? is any open subset of ? N and the restriction of the initial data to ? is any locally finite nonnegative measure in ?. On the other hand, by using the special solutions which have the separate-variables form, our results apply to the elliptic problem Δf=f q posed in any open set ?. For 1 > q > N/(N? 2)+ this problem is well posed in the class of large solutions which tend to infinity on the boundary in a strong sense. As is well known, initial data with such a generality are not allowed for m≧ 1. On the other hand, the present theory fails in several aspects in the subcritical range 0> mm c , where the limits of smooth solutions need not be extended-continuously.  相似文献   

9.
In this work, we introduce and study the well-posedness of the multidimensional fractional stochastic Navier–Stokes equations on bounded domains and on the torus (briefly dD-FSNSE). For the subcritical regime, we establish thresholds for which a maximal local mild solution exists and satisfies required space and time regularities. We prove that under conditions of Beale–Kato–Majda type, these solutions are global and unique. These conditions are automatically satisfied for the 2D-FSNSE on the torus if the initial data has H 1-regularity and the diffusion term satisfies growth and Lipschitz conditions corresponding to H 1-spaces. The case of 2D-FSNSE on the torus is studied separately. In particular, we established thresholds for the global existence, uniqueness, space and time regularities of the weak (strong in probability) solutions in the subcritical regime. For the general regime, we prove the existence of a martingale solution and we establish the uniqueness under a condition of Serrin’s type on the fractional Sobolev spaces.  相似文献   

10.
Compressible Euler Equations¶with General Pressure Law   总被引:3,自引:0,他引:3  
We study the hyperbolic system of Euler equations for an isentropic, compressible fluid governed by a general pressure law. The existence and regularity of the entropy kernel that generates the family of weak entropies is established by solving a new Euler-Poisson-Darboux equation, which is highly singular when the density of the fluid vanishes. New properties of cancellation of singularities in combinations of the entropy kernel and the associated entropy-flux kernel are found. We prove the strong compactness of any sequence that is uniformly bounded in L and whose corresponding sequence of weak entropy dissipation measures is locally H -1 compact. The existence and large-time behavior of L entropy solutions of the Cauchy problem are established. This is based on a reduction theorem for Young measures, whose proof is new even for the polytropic perfect gas. The existence result also extends to the p-system of fluid dynamics in Lagrangian coordinates. Accepted: December 16, 1999  相似文献   

11.
We prove that for the two-dimensional steady complete compressible Euler system, with given uniform upcoming supersonic flows, the following three fundamental flow patterns (special solutions) in gas dynamics involving transonic shocks are all unique in the class of piecewise C 1 smooth functions, under appropriate conditions on the downstream subsonic flows: (i) the normal transonic shocks in a straight duct with finite or infinite length, after fixing a point the shock-front passing through; (ii) the oblique transonic shocks attached to an infinite wedge; (iii) a flat Mach configuration containing one supersonic shock, two transonic shocks, and a contact discontinuity, after fixing a point where the four discontinuities intersect. These special solutions are constructed traditionally under the assumption that they are piecewise constant, and they have played important roles in the studies of mathematical gas dynamics. Our results show that the assumption of a piecewise constant can be replaced by some weaker assumptions on the downstream subsonic flows, which are sufficient to uniquely determine these special solutions. Mathematically, these are uniqueness results on solutions of free boundary problems of a quasi-linear system of elliptic-hyperbolic composite-mixed type in bounded or unbounded planar domains, without any assumptions on smallness. The proof relies on an elliptic system of pressure p and the tangent of the flow angle w = v/u obtained by decomposition of the Euler system in Lagrangian coordinates, and a newly developed method for the L estimate that is independent of the free boundaries, by combining the maximum principles of elliptic equations, and careful analysis of the shock polar applied on the (maybe curved) shock-fronts.  相似文献   

12.
13.
The behavior of discontinuities (weak shocks) of the parameters of a disturbed flow and their interaction with the discontinuities of the basic flow in the geometric acoustics approximation, when the variation of the intensity of such shocks along the characteristics or the bicharacteristics is described by ordinary differential equations, has been investigated by many authors. Thus, Keller [1] considered the case when the undisturbed flow is three-dimensional and steady, and the external inputs do not depend on the flow parameters. An analogous study was made by Bazer and Fleischman for the MGD isentropic flow of an ideal conducting medium [2], while Lugovtsov [3] studied the three-dimensional steady flow of a gas of finite conductivity for small magnetic Reynolds numbers and no electric field. Several studies (for example, [4]) have considered the behavior of discontinuities of the solutions from the general positions of the theory of hyperbolic systems of quasilinear equations. Finally, the interaction of weak shocks (or the equivalent continuous disturbances) with shock waves was studied in [5–11].In what follows we consider one-dimensional (with plane, cylindrical, and spherical waves) and quasi-one-dimensional unsteady flows, and also plane and axisymmetric steady flows. Two problems are investigated: the variation of the intensity of weak shocks in the presence of inputs which depend on the stream parameters, and the interaction of weak shocks with strong discontinuities which differ from contact (tangential) discontinuities.The thermodynamic properties of the gas are considered arbitrary. We note that the resulting formulas for the interaction coefficients of the weak and strong discontinuities are also valid for nonequilibrium flow.  相似文献   

14.
We prove the existence, uniqueness and regularity of weak solutions of a coupled parabolic-elliptic model in 2D, and the existence of weak solutions in 3D; we consider the standard equations of magnetohydrodynamics with the advective terms removed from the velocity equation. Despite the apparent simplicity of the model, the proof in 2D requires results that are at the limit of what is available, including elliptic regularity in L 1 and a strengthened form of the Ladyzhenskaya inequality $$\| f \|_{L^{4}} \leqq c \| f \|_{L^{2,\infty}}^{1/2} \|\nabla f\|_{L^{2}}^{1/2},$$ which we derive using the theory of interpolation. The model potentially has applications to the method of magnetic relaxation introduced by Moffatt (J Fluid Mech 159:359–378, 1985) to construct stationary Euler flows with non-trivial topology.  相似文献   

15.
Using the fundamental solutions for three-dimensional transversely isotropic magnetoelectroelastic bimaterials, the extended displacements at any point for an internal crack parallel to the interface in a magnetoelectroelastic bimaterial are expressed in terms of the extended displacement discontinuities across the crack surfaces. The hyper-singular boundary integral–differential equations of the extended displacement discontinuities are obtained for planar interface cracks of arbitrary shape under impermeable and permeable boundary conditions in three-dimensional transversely isotropic magnetoelectroelastic bimaterials. An analysis method is proposed based on the analogy between the obtained boundary integral–differential equations and those for interface cracks in purely elastic media. The singular indexes and the singular behaviors of near crack-tip fields are studied. Three new extended stress intensity factors at crack tip related to the extended stresses are defined for interface cracks in three-dimensional transversely isotropic magnetoelectroelastic bimaterials. A penny-shaped interface crack in magnetoelectroelastic bimaterials is studied by using the proposed method.The results show that the extended stresses near the border of an impermeable interface crack possess the well-known oscillating singularity r?1/2±iε or the non-oscillating singularity r?1/2±κ. Three-dimensional transversely isotropic magnetoelectroelastic bimaterials are categorized into two groups, i.e., ε-group with non-zero value of ε and κ-group with non-zero value of κ. The two indexes ε and κ do not coexist for one bimaterial. However, the extended stresses near the border of a permeable interface crack have only oscillating singularity and depend only on the mechanical loadings.  相似文献   

16.
Existence problems for the Boltzmann equation constitute a main area of research within the kinetic theory of gases and transport theory. The present paper considers the spatially periodic case with L1 initial data. The main result is that the Loeb subsolutions obtained in a preceding paper are shown to be true solutions. The proof relies on the observation that monotone entropy and finite energy imply Loeb integrability of non-standard approximate solutions, and uses estimates from the proof of the H-theorem. Two aspects of the continuity of the solutions are also considered.  相似文献   

17.
We consider initial layers and uniqueness of weak entropy solutions to hyperbolic conservation laws through the scalar case. The entropy solutions we address assume their initial data only in the sense of weak-star in L as t→0+ and satisfy the entropy inequality in the sense of distributions for t>0. We prove that, if the flux function has weakly genuine nonlinearity, then the entropy solutions are always unique and the initial layers do not appear. We also discuss applications to the zero relaxation limit for hyperbolic systems of conservation laws with relaxation. Accepted: October 26, 1999  相似文献   

18.
The near-tip field of a mode I crack growing steadily under plane strain conditions is studied. A key issue is whether strong discontinuities can propagate under dynamic conditions. Theories which impose rather restrictive assumptions on the structure of an admissible deformation path through a dynamically propagating discontinuity have been proposed recently. Asymptotic solutions for dynamic crack growth, based on such theories, do not contain any discontinuities. In the present work a broader family of deformation paths is considered and we show that a discontinuity can propagate dynamically without violating any of the mechanical constitutive relations of the material. The proposed theory for the propagation of strong discontinuities is corroborated by very detailed finite element calculations. The latter shows a plane of strong discontinuity emanating from the crack tip (with its normal pointing in the direction of crack advance) and moving with the tip. Elastic unloading ahead of and/or behind the plane of discontinuity and behind the crack tip have also been observed.The numerical investigation is performed within the framework of a boundary layer formulation whereby the remote loading is fully specified by the first two terms in the asymptotic solution of the elasto-dynamic crack tip field, characterized by K1, and T. It is shown that the family of near-tip fields, associated with a given crack speed, can be arranged into a one-parameter field based on a characteristic length, Lg, which scales with the smallest dimension of the plastic zone. This extends a previous result for quasi-static crack growth.  相似文献   

19.
We study the asymptotic behavior of compressible isentropic flow through a porous medium when the initial mass is finite. The model system is the compressible Euler equation with frictional damping. As t ?? ??, the density is conjectured to obey the well-known porous medium equation and the momentum is expected to be formulated by Darcy??s law. In this paper, we prove that any L ?? weak entropy solution to the Cauchy problem of damped Euler equations with finite initial mass converges strongly in the natural L 1 topology with decay rates to the Barenblatt profile of the porous medium equation. The density function tends to the Barenblatt solution of the porous medium equation while the momentum is described by Darcy??s law. The results are achieved through a comprehensive entropy analysis, capturing the dissipative character of the problem.  相似文献   

20.
The main purpose of this work is to establish the existence of a weak solution to the incompressible 2D Euler equations with initial vorticity consisting of a Radon measure with distinguished sign in H ? 1, compactly supported in the closed right half-plane, superimposed on its odd reflection in the left half-plane. We make use of a new a priori estimate to control the interaction between positive and negative vorticity at the symmetry axis. We prove that a weak limit of a sequence of approximations obtained by either regularizing the initial data or by using the vanishing viscosity method is a weak solution of the incompressible 2D Euler equations. We also establish the equivalence at the level of weak solutions between mirror symmetric flows in the full plane and flows in the half-plane. Finally, we extend our existence result to odd L 1 perturbations, without distinguished sign, of our original initial vorticity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号