首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We consider the estimation of the unknown mean of a homogeneous random field from observations on a system of homothetically expanding regions. We examine the asymptotic behavior of the variance of the arithmetic-mean estimator. The arithmetic-mean estimator is shown to be asymptotically efficient in the class of linear estimators.Translated from Vychislitel'naya i Prikladnaya Matematika, No. 66, pp. 106–111, 1988.  相似文献   

2.
The maximum principle is applied to prove the Harnack estimate of curvature flows of hypersurfaces in Rn+1,where the normal velocity is given by a smooth function f depending only on the mean curvature.By use of the estimate,some corollaries are obtained including the integral Harnack inequality.In particular,the conditions are given with which the solution to the flows is a translation soliton or an expanding soliton.  相似文献   

3.
First, we review the authors' recent results on translating solutions to mean curvature flows in Euclidean space as well as in Minkowski space, emphasizing on the asymptotic expansion of rotationally symmetric solutions. Then we study the sufficient condition for which the translating solution is rotationally symmetric. We will use a moving plane method to show that this condition is optimal for the symmetry of solutions to fully nonlinear elliptic equations without ground state condition.  相似文献   

4.
The aim of this paper is to investigate the Dirichlet problem of prescribed mean curvature equations. We show the existence of a weak solution. The boundary of domains does not always satisfy the H-convexity condition. Our method is not to construct the barrier functions directly, but to use some uniform estimate for solutions of the approximating regularized solutions.  相似文献   

5.
王增桂 《中国科学:数学》2013,43(12):1193-1208
本文提出并研究带有线性外力场的双曲平均曲率流,通过凸曲线的支撑函数,导出一个双曲型Monge-Ampère 方程并将其转化成Riemann 不变量满足的拟线性双曲方程组。利用拟线性双曲方程组Cauchy 问题的局部解理论,讨论带有线性外力场的双曲平均曲率流Cauchy 问题经典解的生命跨度(即局部解存在的最大时间区间)。  相似文献   

6.
Studying the geometric flow plays a powerful role in mathematics and physics. In this paper, we introduce the mean curvature flow on Finsler manifolds and give a number of examples of the mean curvature flow. For Minkowski spaces, a special case of Finsler manifolds, we prove the short time existence and uniqueness for solutions of the mean curvature flow and prove that the flow preserves the convexity and mean convexity. We also derive some comparison principles for the mean curvature flow.  相似文献   

7.
We introduce a geometric evolution equation of hyperbolic type, which governs the evolution of a hypersurface moving in the direction of its mean curvature vector. The flow stems from a geometrically natural action containing kinetic and internal energy terms. As the mean curvature of the hypersurface is the main driving factor, we refer to this model as the hyperbolic mean curvature flow (HMCF). The case that the initial velocity field is normal to the hypersurface is of particular interest: this property is preserved during the evolution and gives rise to a comparatively simpler evolution equation. We also consider the case where the manifold can be viewed as a graph over a fixed manifold. Our main results are as follows. First, we derive several balance laws satisfied by the hypersurface during the evolution. Second, we establish that the initial-value problem is locally well-posed in Sobolev spaces; this is achieved by exhibiting a convexity property satisfied by the energy density which is naturally associated with the flow. Third, we provide some criteria ensuring that the flow will blow-up in finite time. Fourth, in the case of graphs, we introduce a concept of weak solutions suitably restricted by an entropy inequality, and we prove that a classical solution is unique in the larger class of entropy solutions. In the special case of one-dimensional graphs, a global-in-time existence result is established.  相似文献   

8.
We introduce a geometric evolution equation of hyperbolic type, which governs the evolution of a hypersurface moving in the direction of its mean curvature vector. The flow stems from a geometrically natural action containing kinetic and internal energy terms. As the mean curvature of the hypersurface is the main driving factor, we refer to this model as the hyperbolic mean curvature flow (HMCF). The case that the initial velocity field is normal to the hypersurface is of particular interest: this property is preserved during the evolution and gives rise to a comparatively simpler evolution equation. We also consider the case where the manifold can be viewed as a graph over a fixed manifold. Our main results are as follows. First, we derive several balance laws satisfied by the hypersurface during the evolution. Second, we establish that the initial-value problem is locally well-posed in Sobolev spaces; this is achieved by exhibiting a convexity property satisfied by the energy density which is naturally associated with the flow. Third, we provide some criteria ensuring that the flow will blow-up in finite time. Fourth, in the case of graphs, we introduce a concept of weak solutions suitably restricted by an entropy inequality, and we prove that a classical solution is unique in the larger class of entropy solutions. In the special case of one-dimensional graphs, a global-in-time existence result is established.  相似文献   

9.
On any timelike surface with zero mean curvature in the four-dimensional Minkowski space we introduce special geometric (canonical) parameters and prove that the Gauss curvature and the normal curvature of the surface satisfy a system of two natural partial differential equations. Conversely, any two solutions to this system determine a unique (up to a motion) timelike surface with zero mean curvature so that the given parameters are canonical. We find all timelike surfaces with zero mean curvature in the class of rotational surfaces of Moore type. These examples give rise to a one-parameter family of solutions to the system of natural partial differential equations describing timelike surfaces with zero mean curvature.  相似文献   

10.
In this paper we introduce the hyperbolic mean curvature flow and prove that the corresponding system of partial differential equations is strictly hyperbolic, and based on this, we show that this flow admits a unique short-time smooth solution and possesses the nonlinear stability defined on the Euclidean space with dimension larger than 4. We derive nonlinear wave equations satisfied by some geometric quantities related to the hyperbolic mean curvature flow. Moreover, we also discuss the relation between the equations for hyperbolic mean curvature flow and the equations for extremal surfaces in the Minkowski space-time.  相似文献   

11.
Studies of near periodic patterns in many self-organizing physical and biological systems give rise to a nonlocal geometric problem in the entire space involving the mean curvature and the Newtonian potential. One looks for a set in space of the prescribed volume such that on the boundary of the set the sum of the mean curvature of the boundary and the Newtonian potential of the set, multiplied by a parameter, is constant. Despite its simple form, the problem has a rich set of solutions and its corresponding energy functional has a complex landscape. When the parameter is sufficiently large, there exists a solution that consists of two tori: a larger torus and a smaller torus. Due to the axisymmetry, the problem is formulated on a half plane. A variant of the Lyapunov–Schmidt procedure is developed to reduce the problem to minimizing the energy of the set of two exact tori, as an approximate solution, with respect to their radii. A re-parameterization argument shows that the double tori so obtained indeed solves the equation of mean curvature and Newtonian potential. One also obtains the asymptotic formulae for the radii of the tori in terms of the parameter. This double tori set is the first known disconnected solution.  相似文献   

12.
This paper focuses on the study of the prescribed mean curvature problem on the unit ball. If the difference between the mean curvature candidate f and mean curvature of the standard metric in the supremum norm is sufficiently small, then the existence of positive solutions of conformal mean curvature equation has been known. The purpose of the paper is to investigate quantitatively how large that difference can be by using a flow method.  相似文献   

13.
We consider the evolution of a closed convex hypersurface under a volume preserving curvature flow. The speed is given by a power of the mth mean curvature plus a volume preserving term, including the case of powers of the mean curvature or of the Gauss curvature. We prove that if the initial hypersurface satisfies a suitable pinching condition, the solution exists for all times and converges to a round sphere.  相似文献   

14.
We consider an evolution which starts as a flow of smooth surfaces in nonparametric form propagating in space with normal speed equal to the mean curvature of the current surface. The boundaries of the surfaces are assumed to remain fixed. G. Huisken has shown that if the boundary of the domain over which this flow is considered satisfies the “mean curvature” condition of H. Jenkins and J. Serrin (that is, the boundary of the domain is convex “in the mean”) then the corresponding initial boundary value problem with Dirichlet boundary data and smooth initial data admits a smooth solution for all time. In this paper we consider the case of arbitrary domains with smooth boundaries not necessarily satisfying the condition of Jenkins-Serrin. In this case, even if the flow starts with smooth initial data and homogeneous Dirichlet boundary data, singularities may develop in finite time at the boundary of the domain and the solution will not satisfy the boundary condition. We prove, however, existence of solutions that are smooth inside the domain for all time and become smooth up to the boundary after elapsing of a sufficiently long period of time. From that moment on such solutions assume the boundary values in the classical sense. We also give sufficient conditions that guarantee the existence of classical solutions for all time t ≧ 0. In addition, we establish estimates of the rate at which solutions tend to zero as t → ∞.  相似文献   

15.
In this paper we study first nonexistence of radial entire solutions of elliptic systems of the mean curvature type with a singular or degenerate diffusion depending on the solution u. In particular we extend a previous result given in [R. Filippucci, Nonexistence of radial entire solutions of elliptic systems, J. Differential Equations 188 (2003) 353-389]. Moreover, in the scalar case we obtain nonexistence of all entire solutions, radial or not, of differential inequalities involving again operators of the mean curvature type and a diffusion term. We prove that in the scalar case, nonexistence of entire solutions is due to the explosion of the derivative of every nonglobal radial solution in the right extremum of the maximal interval of existence, while in that point the solution is bounded. This behavior is qualitatively different with respect to what happens for the m-Laplacian operator, studied in [R. Filippucci, Nonexistence of radial entire solutions of elliptic systems, J. Differential Equations 188 (2003) 353-389], where nonexistence of entire solutions is due, even in the vectorial case, to the explosion in norm of the solution at a finite point. Our nonexistence theorems for inequalities extend previous results given by Naito and Usami in [Y. Naito, H. Usami, Entire solutions of the inequality div(A(|Du|)Du)?f(u), Math. Z. 225 (1997) 167-175] and Ghergu and Radulescu in [M. Ghergu, V. Radulescu, Existence and nonexistence of entire solutions to the logistic differential equation, Abstr. Appl. Anal. 17 (2003) 995-1003].  相似文献   

16.
In this paper we consider viscosity equilibria to the mean curvature level set flow with a Dirichlet condition. The main result shows that almost every level set of an equilibrium solution is analytic off of a singular set of Hausdorff dimension at most n − 8 and that these level sets are stationary and stable with respect to the area functional. A key tool developed is a maximum principle for solutions to obstacle problems where the obstacle consists of (viscosity) minimal surfaces. Convergence to equilibrium as t → ∞ is also established for the associated initial-boundary value problem.  相似文献   

17.
The generalized Weierstrass (GW) system is introduced and its correspondence with the associated two-dimensional nonlinear sigma model is reviewed. The method of symmetry reduction is systematically applied to derive several classes of invariant solutions for the GW system. The solutions can be used to induce constant mean curvature surfaces in Euclidean three space. Some properties of the system for the case of nonconstant mean curvature are introduced as well.  相似文献   

18.
We continue our investigation of the “level-set” technique for describing the generalized evolution of hypersurfaces moving according to their mean curvature. The principal assertion of this paper is a kind of reconciliation with the geometric measure theoretic approach pioneered by K. Brakke: we prove that almost every level set of the solution to the mean curvature evolution PDE is in fact aunit-density varifold moving according to its mean curvature. In particular, a.e. level set is endowed with a kind of “geometric structure.” The proof utilizes compensated compactness methods to pass to limits in various geometric expressions.  相似文献   

19.
This paper studies a weighted quasilinear perturbation, through the mean curvature flow operator, of the classical linear heat equation. The mean curvature has the effect of maintaining bounded all classical positive steady states of the model, though their derivatives must be somewhere unbounded. The dynamics of the positive solutions of the model is fully described.  相似文献   

20.
Summary. Convergence for the spatial discretization by linear finite elements of the non-parametric mean curvature flow is proved under natural regularity assumptions on the continuous solution. Asymptotic convergence is also obtained for the time derivative which is proportional to mean curvature. An existence result for the continuous problem in adequate spaces is included. Received September 30, 1993  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号