首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Delayed ignition of combustion synthesis precursors can significantly lower metal oxide film formation temperatures. From bulk In(2)O(3) precursor analysis, it is shown here that ignition temperatures can be lowered by as much as 150 °C. Thus, heat generation from ~60 nm thick In(2)O(3) films is sufficient to form crystalline In(2)O(3) films at 150 °C. Furthermore, we show that the low processing temperatures of sufficiently thick combustion precursor films can be applied to the synthesis of metal oxide nanocomposite films from nanomaterials overcoated/impregnated with the appropriate combustion precursor. The resulting, electrically well-connected nanocomposites exhibit significant enhancements in charge-transport properties vs conventionally processed oxide films while maintaining desirable intrinsic electronic properties. For example, while ZnO nanorod-based thin-film transistors exhibit an electron mobility of 10(-3)-10(-2) cm(2) V(-1) s(-1), encasing these nanorods within a ZnO combustion precursor-derived matrix enhances the electron mobility to 0.2 cm(2) V(-1) s(-1). Using commercially available ITO nanoparticles, the intrinsically high carrier concentration is preserved during nanocomposite film synthesis, and an ITO nanocomposite film processed at 150 °C exhibits a conductivity of ~10 S cm(-1) without post-reductive processing.  相似文献   

2.
Organic field-effect transistors with hydrogen-bonded diketopyrrolopyrrole-thiophene co-oligomers were fabricated by a solution-process method with annealing at 200 °C, showing ambipolar charge-carrier transfer with field-effect mobilities up to μ(h) = 6.7 × 10(-3) cm(2) V(-1)s(-1) and μ(e) = 5.6 × 10(-3) cm(2) V(-1) s(-1).  相似文献   

3.
A zinc-based metal-organic framework Zn(2)(adb)(2)(dabco)·4.5 DMF (K) (DUT-30(Zn), DUT = Dresden University of Technology, adb = 9,10-anthracene dibenzoate, dabco =1,4-diazabicyclo[2.2.2]octane, DMF = N,N-dimethylformamide) was synthesized using a solvothermal route. This MOF exhibits six crystallographic guest dependent phases. Two of them were characterized via single crystal X-ray analysis. The as-synthesized phase K crystallizes in the orthorhombic space group Fmmm, with a = 9.6349(9), b = 26.235(3), and c = 28.821(4) ? and consists of two interpenetrated pillar-layer networks with pcu topology. When the substance loses 0.5 DMF molecules per formula unit, a phase transition from the kinetic phase K to a thermodynamic phase T occurs. Zn(2)(adb)(2)(dabco)·4 DMF (T) crystallizes in the tetragonal space group I4/mmm, with a = 19.5316(8) and c = 9.6779(3) ?. During the evacuation the DUT-30(Zn) undergoes again the structural transformation to A. The activated compound A shows the gate pressure effect in the low pressure region of nitrogen physisorption isotherm and has a BET surface area of 960 m(2 )g(-1) and a specific pore volume of 0.43 cm(3) g(-1). Furthermore, DUT-30(Zn) exhibits a hydrogen storage capacity of 1.12 wt % at 1 bar, a CO(2) uptake of 200 cm(3) g(-1) at -78 °C and 0.9 bar, and a n-butane uptake of 3.0 mmol·g(-1) at 20 °C. The N(2) adsorption process was monitored in situ via X-ray powder diffraction using synchrotron radiation. A low temperature induced transformation of phase A to phase V could be observed if the compound was cooled under vacuum to -196 °C. A further crystalline phase N could be identified if the framework was filled with nitrogen at -196 °C. Additionally, the treatment of activated phase A with water leads to the new phase W.  相似文献   

4.
Kazem Barati 《结构化学》2012,31(4):574-576
The compound 2-(4-chlorophenyl)-1,4,5-triphenyl-1H-imidazole(1,C27H19ClN2) has been synthesized and its crystal structure was determined by single-crystal X-ray diffraction.The crystal of 1 belongs to the triclinic system,space group P with a = 10.3350(19),b = 10.238(2),c = 11.201(2) ,α = 85.957(16),β = 83.148(15),γ = 66.467(15)°,V = 1078.5(4) 3,Mr = 406.89,Z = 2,F(000) = 422,Dc = 1.257 g/cm3,μ = 0.193 mm-1,T = 298(2) K,S = 1.092,R = 0.0702 and wR = 0.1258.The imidazole ring system is planar and makes a dihedral angle of 40.3° with the chlorobenzene ring.  相似文献   

5.
This work reports a facile and cost-effective method for synthesizing photoactive α-Fe(2)O(3) films as well as their performances when used as photoanodes for water oxidation. Transparent α-Fe(2)O(3) mesoporous films were fabricated by template-directed sol-gel chemistry coupled with the dip-coating approach, followed by annealing at various temperatures from 350 °C to 750 °C in air. α-Fe(2)O(3) films were characterized by X-ray diffraction, XPS, FE-SEM and electrochemical measurements. The photoelectrochemical performance of α-Fe(2)O(3) photoanodes was characterized and optimized through the deposition of Co-based co-catalysts via different methods (impregnation, electro-deposition and photo-electro-deposition). Interestingly, the resulting hematite films heat-treated at relatively low temperature (500 °C), and therefore devoid of any extrinsic dopant, achieve light-driven water oxidation under near-to-neutral (pH = 8) aqueous conditions after decoration with a Co catalyst. The onset potential is 0.75 V vs. the reversible hydrogen electrode (RHE), thus corresponding to 450 mV light-induced underpotential, although modest photocurrent density values (40 μA cm(-2)) are obtained below 1.23 V vs. RHE. These new materials with a very large interfacial area in contact with the electrolyte and allowing for a high loading of water oxidation catalysts open new avenues for the optimization of photo-electrochemical water splitting.  相似文献   

6.
Solution-processed In(2)O(3) thin-film transistors (TFTs) were fabricated by a spin-coating process using a metal halide precursor, InCl(3), dissolved in acetonitrile. A thin and uniform film can be controlled and formed by adding ethylene glycol. The synthesized In(2)O(3) thin films were annealed at various temperatures ranging from 200 to 600 °C in air or in an O(2)/O(3) atmospheric environment. The TFTs annealed at 500 °C under air exhibited a high field-effect mobility of 55.26 cm(2) V(-1) s(-1) and an I(on)/I(off) current ratio of 10(7). In(2)O(3) TFTs annealed under an O(2)/O(3) atmosphere at temperatures from 200 to 300 °C exhibited excellent n-type transistor behaviors with field-effect mobilities of 0.85-22.14 cm(2) V(-1) s(-1) and I(on)/I(off) ratios of 10(5)-10(6). The annealing atmosphere of O(2)/O(3) elevates solution-processed In(2)O(3) TFTs to higher performance at lower processing temperature.  相似文献   

7.
采用一步式阶跃电压加压方法,在NH4F/(NH4)2SO4电解质溶液中对W片进行阳极氧化处理制备了WO3多孔薄膜,通过后续热处理温度的控制,制备了性能规律性变化的WO3多孔纳米薄膜材料.用场发射扫描电镜(FE-SEM)、X射线衍射(XRD)分析等手段考察了热处理温度对氧化钨晶体结构和形貌影响的规律,在450°C以下的煅烧温度下,薄膜保持50-100nm孔径;通过对光电化学性质、光催化降解甲基橙动力学行为的研究,考察了不同热处理温度对WO3多孔薄膜光电转换性能影响的规律.研究表明,450°C煅烧处理后的WO3薄膜在500W氙灯光源照射及1.2V偏压下,光电流密度达到5.11mA·cm-2;340及400nm单色光辐射下光电转换效率(IPCE)值分别达到87.4%及22.1%.电化学交流阻抗谱显示,450°C煅烧处理后的WO3薄膜表现出最佳的导电率及最小的界面电荷转移电阻.实验结果证明,高结晶度的多孔结构是WO3薄膜具有高光电转换效率的主要因素,控制热处理温度是实现薄膜具有高孔隙率、完整结晶度、低电阻的重要手段.  相似文献   

8.
Lead titanate, lead zirconate, and lead zirconate titanate (PZT) films in the sub-μm-range were produced at temperatures around 400 °C using novel single-source precursors in a classical thermal CVD process. The design of two bimetallic alkoxide compounds, a lead titanate and a lead zirconate source with almost identical physical properties and complement miscibility, resulted in a new quasi-single-source PZT precursor, an azeotropic mixture that evaporates at 30 °C and at a pressure of 4 × 10(-1) mbar. After thermal treatment at 650 °C, transparent (100)-oriented PZT films with remnant polarization of 20 μC cm(-2) and a coercive field strength of 20 V μm(-1) were achieved. An additional lead source is not required.  相似文献   

9.
The use of an aerosol delivery system enabled fluorine-doped tin dioxide films to be formed from monobutyltin trichloride methanolic solutions at 350-550 °C with enhanced functional properties compared with commercial standards. It was noted that small aerosol droplets (0.3 μm) gave films with better figures of merit than larger aerosol droplets (45 μm) or use of a similar precursor set using atmospheric pressure chemical vapour deposition (CVD) conditions. Control over the surface texturing and physical properties of the thin films were investigated by variation in the deposition temperature and dopant concentration. Optimum deposition conditions for low-emissivity coatings were found to be at a substrate temperature of about 450 °C with a dopant concentration of 1.6 atm% (30 mol% F:Sn in solution), which resulted in films with a low visible light haze value (1.74%), a high charge-carrier mobility (25 cm(2) V s(-1)) and a high charge-carrier density (5.7×10(20) cm(-3)) resulting in a high transmittance across the visible (≈80%), a high reflectance in the IR (80% at 2500 nm) and plasma-edge onset at 1400 nm. Optimum deposition conditions for coatings with applications as top electrodes in thin film photovoltaics were found to be a substrate temperature of about 500 °C with a dopant concentration of 2.2 atm% (30 mol% F:Sn in solution), which resulted in films with a low sheet resistance (3 Ω sq(-1)), high charge-carrier density (6.4×10(20) cm(-3)), a plasma edge onset of 1440 nm and the films also showed pyramidal surface texturing on the micrometer scale which corresponded to a high visible light haze value (8%) for light scattering and trapping within thin film photovoltaic devices.  相似文献   

10.
A novel family of metal oxides with a chemical formula of Sr(2)Ce(1-x)Pr(x)O(4) (x = 0, 0.2, 0.5, 0.8, and 1) was developed as mixed oxide ion and electronic conductors for solid oxide fuel cells (SOFCs). All of the investigated samples were synthesized by the ceramic method at 1000 °C in air and characterized by powder X-ray diffraction (PXRD), selected area electron diffraction (SAED), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and electrochemical impedance spectroscopy (EIS). Ex-situ PXRD reveals that the Sr(2)PbO(4)-type Sr(2)CeO(4) decomposes readily into a mixture of perovskite-type SrCeO(3) and rock-salt-type SrO at 1400 °C in air. Surprisingly, the decomposed products are converted back to the original Sr(2)PbO(4)-type Sr(2)CeO(4) phase at 800 °C in air, as confirmed by in-situ PXRD. Thermal decomposition is highly suppressed in Sr(2)Ce(1-x)Pr(x)O(4) compounds for Pr > 0, suggesting that Pr improves the thermal stability of the compounds. Rietveld analysis of PXRD and SAED supported that both Pr and Ce ions are located on the 2a site in Pbam (space group no. 55). The electrical transport mechanism could be correlated to the reduction of Pr and/or Ce ions and subsequent loss of oxide ions at elevated temperatures, as shown by TGA and in-situ PXRD. Conductivity increases with Pr content in Sr(2)Ce(1-x)Pr(x)O(4). The highest total conductivity of 1.24 × 10(-1) S cm(-1) was observed for Sr(2)Ce(0.2)Pr(0.8)O(4) at 663 °C in air.  相似文献   

11.
Highly dense nitrogen-rich ionic compounds are potential high-performance energetic materials for use in military and industrial venues. Guanazinium salts with promising energetic anions and a family of energetic salts based on nitrogen-rich cations and the 6-nitroamino-2,4-diazido[1,3,5]triazine anion (NADAT) were prepared and fully characterized by elemental analysis, IR spectroscopy, (1)H NMR and (13)C NMR spectroscopy, and differential scanning calorimetry (DSC). The crystal structures of neutral NADAT (2) and its biguanidinium salt 5 were determined by single-crystal X-ray diffraction (2: orthorhombic, Pnma; 5: monoclinic, P2(1)). Additionally, the isomerization behavior of 2 in solution was investigated by proton-decoupled (13)C and (15)N NMR spectroscopy. All the new salts exhibit desirable physical properties, such as relatively high densities (1.63-1.78 g cm(-3)) and moderate thermal stabilities (T(d) = 130-196 °C for 3-10 and 209-257 °C for 11-15). Theoretical performance calculations (Gaussian 03 and Cheetah 5.0) gave detonation pressures and velocities for the ionic compounds 3-15 in the range of 21.0-30.3 GPa and 7675-9048 m s(-1), respectively, which makes them competitive energetic materials.  相似文献   

12.
IR analysis is used here to investigate the changes in N-N, N-H, CO modes of thermally treated diphenyl carbazide (DPC) during the variation of temperature from room temperature up to ≈160°C. Polymorphism in DPC compound has been studied here by detecting the changes in some IR spectroscopic parameters (e.g., mode shift, band contour) during the elevation of temperature. Also, DSC, X-ray, NMR and atomic mass spectra are used as confirming tools for what is obtained by IR. All of the vibrations of DPC were found to be due to ionic fundamentals 3311 cm(-1), 3097 cm(-1), 3052 cm(-1), 1677 cm(-1), 1602 cm(-1), 1492 cm(-1), 1306 cm(-1), 1252 cm(-1), 887 cm(-1) and 755 cm(-1). The results revealed for the first time that the thermally treated DPC traverse four different phase transformations at 50°C, 90°C, 125°C and 140°C. The crystal structure was found to be amorphous, monoclinic, tetragonal, orthorhombic and amorphous within a temperature range (30°C-160°C). X-ray diffraction patterns support the results obtained by IR and DSC.  相似文献   

13.
We investigated various thin-film morphologies of vacuum-deposited highly luminescent 2,5-di-n-octyloxy-1,4-bis[4'-(styryl)styryl]benzene (Ooct-OPV5) in a typical light-emitting-diode device structure. Important modifications in the thin-film morphology and structure were obtained by changing the substrate temperature in the range 23-90 degrees C. Structural analysis by X-ray and electron diffraction provided clear evidence for polymorphism in evaporated thin films of Ooct-OPV5. Concomitantly, the hole mobility in the corresponding devices was determined by transient electroluminescence measurements. We demonstrate that the substrate temperature T(sub) is a key parameter that controls the hole mobility of the devices. Increasing T(sub) between 23 and 84 degrees C results in a progressive increase of the zero-field hole mobility from 10(-6) to 10(-4) cm(2) V(-1) s(-1). The increase in hole mobility is correlated to the average grain size in the thin films. In addition, we give evidence for the existence of a peculiar growth mode in the bulk crystal structure of Ooct-OPV5, whereby the (a,b) and (b,c) planes can grow in a homoepitaxial manner.  相似文献   

14.
Energetic salts based on dipicrylamine and its amino derivative were synthesized. All salts were fully characterized by multinuclear NMR spectroscopy ((1)H, (13)C), vibrational spectroscopy (IR), and elemental analysis. Ethylenediammonium di-DPA (DPA=dipicrylamine) and 1,3-diaminoguanidinium DPA were further confirmed by single-crystal X-ray diffraction. These salts exhibit reasonable physical properties, such as high densities (1.71-1.81 g cm(-3)), good thermal stabilities (T(d) =155-285 °C), and low solubilities in water. The impact sensitivity of 1-methyl-3,4,5-triamino-1,2,4-triazolium DPA is lower than that of 2,4,6-trinitrotoluene (TNT), and for some other energetic salts their impact sensitivities are comparable to that of TNT. Based on experimental densities and theoretical calculations carried out by using the Gaussian 03 suite of programs, all the salts have calculated detonation pressures (22.5-27.8 GPa) and velocities (7226-7917 m s(-1)) that exceed those of conventional TNT. The toxicities of these salts measured by luminescent bacteria toxicity tests are much lower than that of TNT, and two binary eutectic mixtures with melting points that fall between 70 and 100 °C were identified.  相似文献   

15.
This paper reports synthesis, characterization and structural optimization of amino-thienyl-dioxocyano-pyridine (ATOP) chromophores toward a multifunctional amorphous material with unprecedented photorefractive performance. The structural (dynamic NMR, XRD) and electronic (UV/vis, electrooptical absorption, Kerr effect measurements) characterization of the ATOP chromophore revealed a cyanine-type pi-conjugated system with an intense and narrow absorption band (epsilon(max) = 140 000 L mol(-)(1) cm(-)(1)), high polarizability anisotropy (deltaalpha(0) = 55 x 10(-)(40) C V(-)(1) m(2)), and a large dipole moment (13 D). This combination of molecular electronic properties is a prerequisite for strong electrooptical response in photorefractive materials with low glass-transition temperature (T(g)). Other important materials-related properties such as compatibility with the photoconducting poly(N-vinylcarbazole) (PVK) host matrix, low melting point, low T(g), and film-forming capabilities were optimized by variation of four different alkyl substituents attached to the ATOP core. A morphologically stable PVK-based composite containing 40 wt % of ATOP-3 showed an excellent photorefractive response characterized by a refractive index modulation of Deltan approximately 0.007 and a gain coefficient of Gamma approximately 180 cm(-)(1) at a moderate electrical field strength of E = 35 V microm(-)(1). Even larger effects were observed with thin amorphous films consisting of the pure glass-forming dye ATOP-4 (T(g) = 16 degrees C) and 1 wt % of the photosensitizer 2,4,7-trinitro-9-fluorenylidene-malononitrile (TNFM). This material showed complete internal diffraction at a field strength of only E = 10 V microm(-)(1) and Deltan reached 0.01 at only E = 22 V microm(-)(1) without addition of any specific photoconductor.  相似文献   

16.
A series of novel fluoropolymer anion exchange membranes based on the copolymer of vinylbenzyl chloride, butyl methacrylate, and hexafluorobutyl methacrylate has been prepared. Fourier transform infrared (FT-IR) spectroscopy and elemental analysis techniques are used to study the chemical structure and chemical composition of the membranes. The water uptake, ion-exchange capacity (IEC), conductivity, methanol permeability, and chemical stability of the membranes are also determined. The membranes exhibit high anionic conductivity in deionized water at 65 °C ranging from 3.86×10(-2) S cm(-1) to 4.36×10(-2) S cm(-1). The methanol permeability coefficients of the membranes are in the range of 4.21-5.80×10(-8) cm(2) s(-1) at 65 °C. The novel membranes also show good chemical and thermal stability. An open-circuit voltage of 0.7 V and a maximum power density of 53.2 mW cm(-2) of alkaline direct methanol fuel cell (ADMFC) with the membrane C, 1 M methanol, 1 M NaOH, and humidified oxygen are achieved at 65 °C. Therefore, these membranes have great potential for applications in fuel cell systems.  相似文献   

17.
A new compound, [Eu(Hcit)(H2O)2]·H2O]n (1, Hcit3-= C(OH)(COO-)(CH2COO-)2), has been synthesized under hydrothermal reactions of europium oxide, MnCl2·4H2O and citric acid at 120 ℃ for three days. The compound was characterized by single-crystal X-ray diffraction analyses, IR and TGA. Complex 1 crystallizes in monoclinic, space group P21/n with a = 6.179(1), b = 9.688(2), c = 16.990(3) , β = 91.98(3)°, Z = 4, V = 1016.4(3) 3, C6H11EuO10, Mr = 395.11, Dc = 2.582 g/cm3, μ = 6.218 mm-1, F(000) = 760, R = 0.0183 and wR = 0.0411. Single-crystal X-ray analysis reveals that complex 1 displays 1D ladder chains along the a axis, with dinuclear Eu2O2 units serving as "steps" and carboxylate groups as "uprights", which are connected by hydrogen bonds. The solid-state luminescent property of complex 1 was investigated at room temperature. Upon excitation at 394 nm, compound 1 exhibits interesting luminescent properties with several intense bands in the visible region and the most intense and sharp emission being in the red region at 615 nm. The TGA and XRD results prove that complex 1 undergoes facile thermal decomposition to form Eu2O3 at about 870 ℃.  相似文献   

18.
Zhang XM  Hou JJ  Zhang WX  Chen XM 《Inorganic chemistry》2006,45(20):8120-8125
Two isostructural mixed-valence vanadium phosphonoacetates H2(DABCO)[V(IV)O(H2O)V(III)(OH)(O3PCH2CO2)2].2.5H2O (1) and H2(PIP)[V(IV)O(H2O)V(III)(OH)(O3PCH2CO2)2].2.5H2O (2) have been synthesized. They crystallize in the orthorhombic space group Pnna with a = 7.0479(10) A, b = 15.307(2) A, and c = 17.537(3) A for 1 and a = 7.0465(9) A, b = 15.646(2) A, and c = 17.396(2) A for 2. X-ray single-crystal diffraction reveals that 1 and 2 have a three-dimensional open framework featuring 16-ring ellipsoid channels that are filled with doubly protonated 1,4-diazabicyclo[2,2,2]octanium/piperazinium cations and water molecules. According to the classification in metal-organic frameworks, 1 and 2 contain infinite (-O-V-)(infinity) chains that are cross-linked by "metalloligand" [VO(H2O)(O3PCH2CO2)2](4-) into a 3-D net of the sra topology. The temperature dependence of the magnetic susceptibility of 1 shows that the chi(m)T value in the range of 60-320 K is constant of 1.105 cm3 K mol(-1)/V2 unit, and upon further cooling, the chi(m)T value rapidly increases to 1.81 cm3 K mol(-1) at 2 K. The corresponding effective magnetic moment (mu(eff))/V2 unit varies from 2.97 mu(B) at 320 K to 3.80 mu(B) at 2 K. The magnetic data in the range of 2-320 K follow the Curie-Weiss law with C = 1.074 cm3 K mol(-1) and Theta= -1.34 K.  相似文献   

19.
A series of 2,6-diaryl-substituted naphtho[1,8-bc:5,4-b'c']dithiophene derivatives 2-6, whose aryl groups include 5-hexyl-2-thienyl, 2,2'-bithiophen-5-yl, phenyl, 2-naphthyl, and 4-biphenylyl, was synthesized by the palladium-catalyzed Suzuki-Miyaura coupling and utilized as active layers of organic field-effect transistors (OFETs). All devices fabricated using vapor-deposited thin films of these compounds showed typical p-type FET characteristics. The mobilities are relatively good and widely range from 10(-4) to 10(-1) cm2 V(-1) s(-1), depending on the substituent groups. Among them, the mobilities of the devices using films of 3-5 tend to increase with the increasing temperature of the Si/SiO2 substrate during film deposition. In particular, the device based on the naphthyl derivative 5, when fabricated at 140 degrees C, marked a high mobility of 0.11 cm2 V(-1) s(-1) with an on/off ratio of 10(5), which is a top class of performance among organic thin-film transistors. Studies of X-ray diffractograms (XRDs) have revealed that the film of 4 and 5 is composed of two kinds of crystal grains with different phases, so-called "single-crystal phase" and "thin film phase", and that the proportion of the thin film phase increases with an increase of the substrate temperature. In the thin film phase the assembled molecules stand nearly upright on the substrate in such a way as to be favorable to carrier migration.  相似文献   

20.
1,3,5-Triphenyl-6-oxoverdazyl radicals 1[n], in which each phenyl group is substituted with three alkylsulfanyl groups (n = 6, 8, 10), exhibit a monotropic columnar rectangular (Col(r)) phase below 60 °C. Detailed analysis of 1[n] revealed a broad absorption band in the visible region with maxima at 540 and 610 nm and redox potentials E(1/2)(0/+1) = +0.99 V and E(1/2)(0/-1) = -0.45 V vs SCE. Photovoltaic studies of 1[8] demonstrated a hole mobility of 1.52 × 10?3 cm2 V?1 s?1 in the mesophase with an activation energy of 0.06 ± 0.01 eV. Magnetization studies of 1[8] revealed nearly ideal paramagnetic behavior in either the solid or fluid phase above 200 K and weak antiferromagnetic interactions at low temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号