首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reaction of [Ru(arene)Cl(2)](2) (arene = benzene, toluene, p-cymene, hexamethylbenzene) with K(7)[PW(11)O(39)].14H(2)O provided two series of organometallic derivatives of heteropolytungstates: type-1 and type-2 complexes of general formulas [PW(11)O(39){Ru(arene)(H(2)O)}](5-) and [{PW(11)O(39){Ru(arene)}}(2){WO(2)}](8-), respectively. All compounds were characterized by infrared and multinuclear NMR ((1)H, (31)P, (183)W) spectroscopies. The crystal structures of Na(4)K(4)[{PW(11)O(39){Ru(benzene)}}(2){WO(2)}].6H(2)O (NaK-2a.6H(2)O), K(7)H[{PW(11)O(39){Ru(toluene)}}(2){WO(2)}].4H(2)O (K-2b.4H(2)O), and Cs(3)K(2)[PW(11)O(39){Ru(p-cymene)(H(2)O)}].4H(2)O (CsK-1c.4H(2)O) were obtained and revealed that the {Ru(arene)} fragment is supported on the oxometallic framework. Photochemical reactivity of [PW(11)O(39){Ru(arene)(H(2)O)}](5-) (arene = toluene, p-cymene) in the presence of various ligands L (L = H(2)O, dimethyl sulfoxide, tetramethylene sulfoxide, and diphenyl sulfoxide) was investigated, and led to the formation of [PW(11)O(39){Ru(L)}](5-), in which the ruthenium is incorporated into the lacunary [PW(11)O(39)](7-) anion.  相似文献   

2.
New Ru(II) and Os(II) derivatives of the monovacant [alpha-PW(11)O(39)](7-) anion ([PW(11)O(39){M(DMSO)(3)(H(2)O)}](5-) (M = Ru (1), Os (2)) and [PW(11)O(39){Os(eta(6)-p-cym)(H(2)O)}](5-) (3)) have been synthesized and characterized. The binding mode of the d(6)-{M(II)L(3)(H(2)O)}(2+) moieties in these compounds is similar to that in the previously described [PW(11)O(39){Ru(eta(6)-p-cym)(H(2)O)}](5-) (4) complex: bidentate, on two nonequivalent oxygen atoms of the lacuna, leading to a loss of the C(s) symmetry of the parent anion, which thus plays the role of a prochiral bidentate ligand. The density functional theory (DFT) (B3PW91) computation of the lowest unoccupied molecular orbitals of the {ML(3)(H(2)O)}(2+) (M = Os, Ru; L(3) = fac-(DMSO)(3), eta(6)-C(6)H(6)) fragments reveals the similarities between their electrophilic properties. The origin of the regioselectivity of the grafting was investigated through a DFT (B3PW91) analysis of (i) the highest occupied molecular orbital of [alpha-PW(11)O(39)](7-) and (ii) the relative energies of the different potential regioisomers obtained by a bidentate grafting of the {ML(3)(H(2)O)}(2+) moiety onto the lacuna of [alpha-PW(11)O(39)](7-). The role of the water ligand in the stabilization of this peculiar structure was studied.  相似文献   

3.
We have synthesized the mono-ruthenium substituted Keggin-type silicotungstate [SiW(11)O(39)Ru(III)(H(2)O)](5-) (1a) by reaction of the mono-lacunary silicotungstate precursor [SiW(11)O(39)](8-) with Ru(acac)(3) under hydrothermal conditions and isolated as the caesium salt Cs(5)[SiW(11)O(39)Ru(III)(H(2)O)] (1). The DMSO-coordinated complex [SiW(11)O(39)Ru(III)(DMSO)](5-) (2a) was prepared by reaction of 1a with DMSO in aqueous solution at 353 K and isolated as the caesium-potassium mixed salt Cs(4.9)K(0.1)[SiW(11)O(39)Ru(III)(DMSO)] (2). Both compounds 1 and 2 were characterized by single-crystal X-ray structure analysis, powder X-ray structure analysis, UV-Vis spectroscopy, cyclic voltammetry, IR-spectroscopy and elemental analysis. 1 crystallized in the tetragonal space group P4(2)/ncm with a = 20.9299(4), c = 10.3603(4) Angstrom, Z = 4. The ruthenium atom in the Keggin unit could not be distinguished from the tungsten due to disorder. The structural analysis of 2 (monoclinic, P2(1)/c, a = 13.5850(4), b = 20.2764(7), c = 18.1326(4) Angstrom, beta = 90.8730(10) degrees , Z = 4) successfully revealed that the incorporated ruthenium atom is coordinated by DMSO through a Ru-S bond. Polyanion 2a represents the first mono-substituted Keggin ion in which the ruthenium center is not crystallographically disordered. UV-Vis spectroscopy combined with controlled potential electrolysis confirmed that the incorporated rutheniums in 1 and 2 have a valence state of +3. The IR spectra of both 1 and 2 were very similar. All these data indicate that 1 synthesized by reaction of the mono-lacunary silicotungstate K(8)[SiW(11)O(39)] with Ru(acac)(3) under hydrothermal conditions is truly the mono-ruthenium substituted Keggin-type silicotungstate.  相似文献   

4.
The novel Ru(II)-supported heteropolytungstates [Ru(dmso)(3)(H(2)O)XW(11)O(39)](6-)(X = Ge, Si) have been synthesized and characterized by single-crystal X-ray diffraction, multinuclear NMR ((183)W, (13)C, (1)H, (29)Si) and IR spectroscopy, elemental analysis and electrochemistry. The novel polyanion structure consists of a Ru(dmso)(3)(H(2)O) unit linked to a monolacunary [XW(11)O(39)](8-) Keggin fragment via two Ru-O-W bonds resulting in an assembly with C(1) symmetry. Polyanions 1 and 2 were synthesized by reaction of cis-Ru(dmso)(4)Cl(2) with [A-alpha-XW(9)O(34)](10-) in aqueous, acidic medium (pH 4.8). Tungsten-183 NMR of 1 leads to a spectrum with 11 peaks of equal intensity, indicating that the solid-state structure is preserved in solution. Electrochemistry studies revealed that 1 and 2 are stable in solution at least from pH 0 to 7, even in the presence of dioxygen. Their cyclic voltammetry patterns show mainly two two-electron reversible W-waves, those of the Si derivative 2 being located at slightly more negative potentials than those of the Ge derivative 1. The observed stability of 1 and 2 might be attributed to a stabilization of the Ru-center both by the strongly bound dmso ligands and the Keggin moiety. This stabilization drives the redox waves of Ru outside the accessible potential range. However, conditions were found to reveal, at least partially, the redox behavior of Ru in 1 and 2.  相似文献   

5.
beta-[SiW(12)O(40)](4)(-) (C(3)(v) symmetry) is sufficiently higher in energy than its alpha-isomer analogue that effectively complete conversion to alpha-[SiW(12)O(40)](4)(-) (T(d)) is observed. By contrast, beta- and alpha-[AlW(12)O(40)](5)(-) (beta- and alpha-1; C(3)(v) and T(d), respectively) are sufficiently close in energy that both isomers are readily seen in (27)Al NMR spectra of equilibrated (alpha-beta) mixtures. Recently published DFT calculations ascribe the stability of beta-1 to an electronic effect of the large, electron-donating [AlO(4)](5)(-) (T(d)) moiety encapsulated within the polarizable, fixed-diameter beta-W(12)O(36) (C(3)(v)) shell. Hence, no unique structural distortion of beta-1 is needed or invoked to explain its unprecedented stability. The results of these DFT calculations are confirmed by detailed comparison of the X-ray crystal structure of beta-1 (beta-Cs(4.5)K(0.5)[Al(III)W(12)O(40)].7.5H(2)O; orthorhombic, space group Pmc2(1), a = 16.0441(10) A, b = 13.2270(8) A, c = 20.5919(13) A, Z = 4 (T = 100(2) K)) with previously reported structures of alpha-1, alpha- and beta-[SiW(12)O(40)](4)(-), and beta(1)-[SiMoW(11)O(40)](4)(-).  相似文献   

6.
A series of new star-shaped trinuclear Ru(II) complexes of imidazo[4,5-f][1,10]phenanthroline derivatives, [{Ru(bpy)(2)}(3){μ-mes(1,4-phO-Izphen)(3)}](ClO(4))(6)·4H(2)O (6), [{Ru(phen)(2)}(3){μ-mes(1,4-phO-Izphen)(3)}](ClO(4))(6)·3H(2)O (7), [{Ru(bpy)(2)}(3){μ-mes(1,2-phO-Izphen)(3)}](ClO(4))(6)·4H(2)O (8), and [{Ru(phen)(2)}(3){μ-mes(1,2-phO-Izphen)(3)}](ClO(4))(6)·3H(2)O (9) [mes(1,4-phO-Izphen)(3) (4) = 2,4,6-tri methyl-1,3,5-tris(4-oxymethyl-1-yl(1H-imidazo-2-yl-[4,5-f][1,10]phenanthroline)phenyl)benzene and (mes(1,2-phO-Izphen)(3) (5) = 2,4,6-trimethyl-1,3,5-tris(2-oxymethyl-1-yl(1H-imidazo-2-yl[4,5-f][1,10]phenanthroline)phenyl)benzene] have been synthesized and characterized. Their photophysical and electrochemical properties have also been studied. The core molecule, 1,3,5-tris(bromomethyl)-2,4,6-trimethylbenzene (1) and the trialdehyde intermediate, 2,4,6-trimethyl-1,3,5-tris(4-oxymethyl-1-formylphenyl)benzene (2) are characterized by single crystal X-ray diffraction: triclinic, P1[combining macron]. The complexes 6-9 exhibit Ru(II) metal centered emission at 618, 601, 615, and 605 nm, respectively, in fluid solution at room temperature. The emission profile and emission maxima are similar and independent of the excitation wavelength for each complex. The complexes 6-9 undergo metal centered oxidation and the E(1/2) values for the Ru(II)/Ru(III) redox couples are 1.33, 1.34, 1.35, and 1.35 V versus Ag/Ag(+), respectively, which are cathodically shifted with respect to that of the mononuclear complex [Ru(bpy)(2)(PIP)](2+) (PIP = 2-phenylimidazo[4,5-f][1,10]phenanthroline). The study demonstrates the versatility of the highly symmetric trinucleating imidazo[4,5-f][1,10]phenanthroline-based core ligands 4 and 5 in forming trinuclear Ru(II) complexes.  相似文献   

7.
8.
The influence of the nature of alkali metal cations on the structure of the species obtained from the trivacant precursor A-alpha-[SiW(9)O(34)](10-) has been studied. Starting from the potassium salt 1, K(10)A-alpha-[SiW(9)O(34)].24H(2)O, the sandwich-type complex 2, K(10.75)[Co(H(2)O)(6)](0.5)[Co(H(2)O)(4)Cl](0.25)A-alpha-[K(2)(Co(H(2)O)(2))(3)(SiW(9)O(34) )(2)].32H(2)O, has been obtained. The crystal structures of these two compounds consist of two A-alpha-[SiW(9)O(34)](10-) anions linked by a set of potassium (1) or cobalt plus potassium cations (2), and the relative orientation of the two half-anions is the same. Attempts to link two A-alpha-[SiW(9)O(34)](10-) anions by tungsten atoms instead of cobalt failed whatever the alkali metal cation. Moreover, the nondisordered structure of Cs(15)[K(SiW(11)O(39))(2)].39H(2)O is described. Two [SiW(11)O(39)](8-) anions are linked through a potassium cation with a "trans-oid" conformation, and the potassium occupies a cubic coordination site.  相似文献   

9.
A computational study of the relative stability of the monolacunary Keggin polyoxotungstates alpha and beta 3-[XW 11O 39] ( m- ) (X = P, m = 7; X = Si, m = 8) was performed. The influence of the nature of different grafted cations and of the central anion XO 4 ( n- ) on the relative stabilities of the lacunary isomers was analyzed. From these results, an interpretation of the structural difference in the metallic frameworks of alpha-[PW 11O 39{Ru(DMSO) 3(H 2O)}] (5-), alpha-[PW 11O 39{Ru(C 6H 6)(H 2O)}] (5-), and beta 3-[SiW 11O 39{Ru(DMSO) 3(H 2O)}] (6-) is proposed, and conclusions are drawn as to how to favor the formation of beta 3 derivatives in future syntheses.  相似文献   

10.
The condensation reactions of the dimer [ClP(micro-NR)](2) with organic diacids [LL(H)(2)], possessing linear orientations of their organic groups, result in the formation of phospha(III)zane macrocyles of the type [{P(mu-NR)}(2)(LL)](n) of various sizes. The series of macrocycles [{P(mu-N(t)Bu)}(2){1,5-(NH)(2)C(10)H(6)}](3), [{P(mu-NCy)}(2)(1,5-O(2)C(10)H(6))](n) [n = 3; n = 4], [{P(mu-N(t)Bu)}(2){1,4-(NH)(2)C(6)H(4)}](4), [{P(mu-N(t)Bu)}(2)(1,4-O(2)C(6)H(4))], [{P(mu-NCy)}(2)(1,4-O(2)C(6)H(4))](3) and [{P(mu-N(t)Bu)}(2){(NH)C(6)H(4)OC(6)H(4)(NH)}](2) can be related to classical organic frameworks, like calixarenes.  相似文献   

11.
We report the dimerization of a mono-ruthenium(III) substituted alpha-Keggin-type tungstosilicate [alpha-SiW(11)O(39)Ru(III)(H2O)](5-) to a micro-oxo-bridged dimer [{alpha-SiW(11)O(39)Ru(m)}2O](n-) (m = III, n = 12; m = IV/III, n = 11; m = IV, n = 10). Single crystal X-ray structure analysis of Rb(10)[{alpha-SiW(11)O(39)Ru(IV)}2O].9.5H2O (triclinic, P1, with a = 12.7650(6) A, b = 18.9399(10) A, c = 20.2290(10) A, alpha = 72.876(3) degrees, beta = 88.447(3) degrees, gamma = 80.926(3) degrees, V = 4614.5(4) A(3), Z = 2) reveals that two mono-ruthenium substituted tungstosilicate alpha-Keggin units are connected through micro-oxo-bridging Ru-O-Ru bonds. Solution (183)W-NMR of [{SiW(11)O(39)Ru(IV)}2O](10-) resulted in six peaks (-63, -92, -110, -128, -132, and -143 ppm, intensities 2 : 2 : 1 : 2 : 2 : 2) confirming that the micro-oxo bridged dimer structure is maintained in aqueous solution. The dimerization mechanism is presumably initiated by deprotonation of the aqua-ruthenium complex [alpha-SiW(11)O(39)Ru(III)(H2O)](5-) leading to a hydroxy-ruthenium complex [alpha-SiW(11)O(39)Ru(III)(OH)](6-). Dimerization of two hydroxy-ruthenium complexes produces the micro-oxo bridged dimer [{alpha-SiW(11)O(39)Ru(III)}2O](12-) and a water molecule. The Ru(III) containing dimer is oxidized by molecular oxygen to produce a mixed valence species [{alpha-SiW(11)O(39)Ru(IV-III)}2O](11-), and further oxidation results in the Ru(IV) containing [{alpha-SiW(11)O(39)Ru(IV)}2O](10-).  相似文献   

12.
Reaction of in situ generated copper(II)-monosubstituted Keggin polyoxometalates and copper(II)-bipyridine-oxalate complexes in the corresponding alkaline acetate buffer led to the formation of hybrid metal organic-inorganic compounds K(2)[{SiW(11)O(39)Cu(H(2)O)}{Cu(2)(bpy)(2)(H(2)O)(2)(mu-ox)}(2)].14H(2)O (1), K(14)[{SiW(11)O(39)Cu(H(2)O)}{Cu(2)(bpy)(2)(mu-ox)}](2)[SiW(11)O(39)Cu(H(2)O)].55H(2)O (2), (NH(4))(4)[{SiW(11)O(39)Cu(H(2)O)}{Cu(2)(bpy)(2)(mu-ox)}].10H(2)O (3), and Rb(4)[{SiW(11)O(39)Cu(H(2)O)}{Cu(2)(bpy)(2)(mu-ox)}].10H(2)O (4). Their structures have been established by single-crystal X-ray diffraction. The main structural feature of these compounds is the presence of copper(II)-monosubstituted alpha-Keggin polyoxoanions as inorganic building blocks, on which the mu-oxalatodicopper metalorganic blocks are supported. Compound 1contains the discrete hybrid polyanion [{SiW(11)O(39)Cu(H(2)O)}{Cu(2)(bpy)(2)(H(2)O)(2)(mu-ox)}(2)](2)(-), whereas the polymeric hybrid polyanion [{SiW(11)O(39)Cu(H(2)O)}{Cu(2)(bpy)(2)(mu-ox)}(2)](n)(4)(n)(-) gives a monodimensional character to compounds 2-4. Magnetic and EPR results are discussed with respect to the crystal structure of the compounds. DFT calculations on both the [Cu(2)(bpy)(2)(H(2)O)(4)(mu-ox)](2+) cationic complex and the metalorganic blocks have been performed in order to determine the optimized geometry and the magnetic coupling constants, respectively.  相似文献   

13.
Three {Ru(p-cym)}(2+) (p-cym = p-cymene) derivatives of [Nb(6)O(19)](8-)-[Nb(6)O(19){Ru(p-cym)}](6-) (Nb(6)Ru(1)), trans-[Nb(6)O(19){Ru(p-cym)}(2)](4-) (t-Nb6Ru2), and [Nb(6)O(19){Ru(p-cym)}(4)] (Nb(6)Ru(4))--have been synthesized in water by reaction between [Ru(p-cym)Cl(2)](2) and the hexaniobate. In the solid state, Nb(6)Ru(1) and Nb(6)Ru(4) have been characterized by IR and EDX spectroscopies, whereas t-Nb(6)Ru(2) has been characterized by IR spectroscopy and single-crystal X-ray diffraction (crystal data for K(4)-trans-[Nb(6)O(19){Ru(p-cym)}(2)].14H(2)O (K(4)-t-Nb(6)Ru(2).14H(2)O). In solution, all compounds were characterized by (1)H NMR and ESI mass spectrometry analyses, and Nb(6)Ru(1) was also analyzed by (17)O NMR. These studies allowed a comparison of the differences in behaviour of the three complexes in water: Nb(6)Ru(1) is particularly stable, Nb(6)Ru(4) decomposes by loss of {Ru(p-cym)}(2+) fragments, and trans-[Nb(6)O(19){Ru(p-cym)}(2)](4-) isomerizes into cis-[Nb(6)O(19){Ru(p-cym)}(2)](4-). A rational mechanism for the isomerisation of t-Nb(6)Ru(2) is proposed on the basis of a kinetic study.  相似文献   

14.
The oxothio polyanions gamma-[SiW(10)M(2)S(2)O(38)](6)(-) (M = Mo(V), W(V)) were obtained through stereospecific addition of the dication [M(2)S(2)O(2)](2+) (M = Mo, W) to the divacant gamma-[SiW(10)O(36)](8)(-) anion in dimethylformamide. These compounds were isolated as crystals and are stable in usual organic solvents and in aqueous medium from pH = 1 to pH = 7. NEt(4)Cs(3)H(2)[SiW(10)Mo(2)S(2)O(38)].6H(2)O (a gamma-isomer derived from the alpha Keggin structure capped by the [Mo(2)S(2)O(2)](2+) fragment containing a metal-metal bond) crystallizes in the triclinic space group P&onemacr; with a = 12.050(3) ?, b = 12.695(2) ?, c = 20.111(4) ?, alpha = 74.35(2) degrees, beta = 86.83(2) degrees, gamma = 63.50(2) degrees, Z = 2. NEt(4)Cs(5)[SiW(12)S(2)O(38)].7H(2)O is isostructural and crystallizes in the triclinic space group P&onemacr; with a = 12.197(4) ?, b = 12.714(3) ?, c = 20.298(3) ?, alpha = 74.75(1) ?, beta = 86.48(2) degrees, gamma = 61.80(2) degrees, Z = 2. (183)W NMR spectra of Li(+) salts in aqueous solution agree with the solid state structures and reveal 100% purity for both anions. Polarographic, infrared and UV-vis data are also given.  相似文献   

15.
Interaction of the lacunary [alpha-XW(9)O(33)](9-) (X = As(III), Sb(III)) with Fe(3+) ions in acidic, aqueous medium leads to the formation of dimeric polyoxoanions, [Fe(4)(H(2)O)(10)(beta-XW(9)O(33))(2)](6-) (X = As(III), Sb(III)) in high yield. X-ray single-crystal analyses were carried out on Na(6)[Fe(4)(H(2)O)(10)(beta-AsW(9)O(33))(2)] x 32H(2)O, which crystallizes in the monoclinic system, space group C2/m, with a = 20.2493(18) A, b = 15.2678(13) A, c = 16.0689(14) A, beta = 95.766(2) degrees, and Z = 2; Na(6)[Fe(4)(H(2)O)(10)(beta-SbW(9)O(33))(2)] x 32H(2)O is isomorphous with a = 20.1542(18) A, b = 15.2204(13) A, c = 16.1469(14) A, and beta = 95.795(2) degrees. The selenium and tellurium analogues are also reported, [Fe(4)(H(2)O)(10)(beta-XW(9)O(33))(2)](4-) (X = Se(IV), Te(IV)). They are synthesized from sodium tungstate and a source of the heteroatom as precursors. X-ray single-crystal analysis was carried out on Cs(4)[Fe(4)(H(2)O)(10)(beta-SeW(9)O(33))(2)] x 21H(2)O, which crystallizes in the triclinic system, space group P macro 1, with a = 12.6648(10) A, b = 12.8247(10) A, c = 16.1588(13) A, alpha = 75.6540(10) degrees, beta = 87.9550(10) degrees, gamma = 64.3610(10) gamma, and Z = 1. All title polyanions consist of two (beta-XW(9)O(33)) units joined by a central pair and a peripheral pair of Fe(3+) ions leading to a structure with idealized C(2h) symmetry. It was also possible to synthesize the Cr(III) derivatives [Cr(4)(H(2)O)(10)(beta-XW(9)O(33))(2)](6-) (X = As(III), Sb(III)), the tungstoselenates(IV) [M(4)(H(2)O)(10)(beta-SeW(9)O(33))(2)]((16)(-)(4n)-) (M(n+) = Cr(3+), Mn(2+), Co(2+), Ni(2+), Zn(2+), Cd(2+), and Hg(2+)), and the tungstotellurates(IV) [M(4)(H(2)O)(10)(beta-TeW(9)O(33))(2)]((16-4n)-) (M(n+) = Cr(3+), Mn(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Cd(2+), and Hg(2+)), as determined by FTIR. The electrochemical properties of the iron-containing species were also studied. Cyclic voltammetry and controlled potential coulometry aided in distinguishing between Fe(3+) and W(6+) waves. By variation of pH and scan rate, it was possible to observe the stepwise reduction of the Fe(3+) centers.  相似文献   

16.
Wang Y  Feng L  Li Y  Hu C  Wang E  Hu N  Jia H 《Inorganic chemistry》2002,41(24):6351-6357
Two novel compounds, [Co(4,4'-bipy)(H(2)O)(4)](4-abs)(2).H(2)O (1) and [Mn(4,4'-bipy)(H(2)O)(4)](4-abs)(2).2H(2)O (2) (4,4'-bipy = 4,4'-bipyridine; 4-abs = 4-aminobenzenesulfonate), have been synthesized in aqueous solution and characterized by single-crystal X-ray diffraction, elemental analyses, UV-vis and IR spectra, and TG analysis. X-ray structural analysis revealed that 1 and 2 both possess unusual hydrogen-bonded three-dimensional (3-D) networks encapsulating one-dimensional (1-D) covalently bonded infinite [M(4,4'-bipy)(H(2)O)(4)](2+) (M = Co, Mn) chains. The 4-abs anions in 1 form 1-D zigzag chains through hydrogen bonds. These chains are further extended through crystallization water molecules into 3-D hydrogen-bonded networks with 1-D channels, in which the [Co(4,4'-bipy)(H(2)O)(4)](2+) linear covalently bonded chains are located. Crystal data for 1: C(22)H(30)CoN(4)O(11)S(2), monoclinic P2(1), a = 11.380(2) A, b = 8.0274(16) A, c = 15.670(3) A, alpha = gamma = 90 degrees, beta = 92.82(3) degrees, Z = 2. Compound 2 contains interesting two-dimensional (2-D) honeycomb-like networks formed by 4-abs anions and lattice water molecules via hydrogen bonding, which are extended through other crystallization water molecules into three dimensions with 1-D hexagonal channels. The [Mn(4,4'-bipy)(H(2)O)(4)](2+) linear covalent chains exist in these channels. Crystal data for 2: C(22)H(32)MnN(4)O(12)S(2), monoclinic P2(1)/c, a = 15.0833(14) A, b = 8.2887(4) A, c = 23.2228(15) A, alpha = gamma = 90 degrees, beta = 95.186(3) degrees, Z = 4.  相似文献   

17.
Catalytic water oxidation to generate oxygen was achieved using all-inorganic mononuclear ruthenium complexes bearing Keggin-type lacunary heteropolytungstate, [Ru(III)(H(2)O)SiW(11)O(39)](5-) (1) and [Ru(III)(H(2)O)GeW(11)O(39)](5-) (2), as catalysts with (NH(4))(2)[Ce(IV)(NO(3))(6)] (CAN) as a one-electron oxidant in water. The oxygen atoms of evolved oxygen come from water as confirmed by isotope-labeled experiments. Cyclic voltammetric measurements of 1 and 2 at various pH's indicate that both complexes 1 and 2 exhibit three one-electron redox couples based on ruthenium center. The Pourbaix diagrams (plots of E(1/2) vs pH) support that the Ru(III) complexes are oxidized to the Ru(V)-oxo complexes with CAN. The Ru(V)-oxo complex derived from 1 was detected by UV-visible absorption, EPR, and resonance Raman measurements in situ as an active species during the water oxidation reaction. This indicates that the Ru(V)-oxo complex is involved in the rate-determining step of the catalytic cycle of water oxidation. The overall catalytic mechanism of water oxidation was revealed on the basis of the kinetic analysis and detection of the catalytic intermediates. Complex 2 exhibited a higher catalytic reactivity for the water oxidation with CAN than did complex 1.  相似文献   

18.
X-ray crystal structures are reported for the following complexes: [Ru(2)Cl(3)(tacn)(2)](PF(6))(2).4H(2)O (tacn = 1,4,7-triazacyclononane), monoclinic P2(1)/n, Z = 4, a = 14.418(8) ?, b = 11.577(3) ?, c = 18.471(1) ?, beta = 91.08(5) degrees, V = 3082 ?(3), R(R(w)) = 0.039 (0.043) using 4067 unique data with I > 2.5sigma(I) at 293 K; [Ru(2)Br(3)(tacn)(2)](PF(6))(2).2H(2)O, monoclinic P2(1)/a, Z = 4, a = 13.638(4) ?, b = 12.283(4) ?, c = 18.679(6) ?, beta = 109.19(2) degrees, V = 3069.5 ?(3), R(R(w)) = 0.052 (0.054) using 3668 unique data with I > 2.5sigma(I) at 293 K; [Ru(2)I(3)(tacn)(2)](PF(6))(2), cubic P2(1)/3, Z = 3, a = 14.03(4) ?, beta = 90.0 degrees, V = 2763.1(1) ?(3), R (R(w)) = 0.022 (0.025) using 896 unique data with I > 2.5sigma(I) at 293 K. All of the cations have cofacial bioctahedral geometries, although [Ru(2)Cl(3)(tacn)(2)](PF(6))(2).4H(2)O, [Ru(2)Br(3)(tacn)(2)](PF(6))(2).2H(2)O, and [Ru(2)I(3)(tacn)(2)](PF(6))(2) are not isomorphous. Average bond lengths and angles for the cofacial bioctahedral cores, [N(3)Ru(&mgr;-X)(3)RuN(3)](2+), are compared to those for the analogous ammine complexes [Ru(2)Cl(3)(NH(3))(6)](BPh(4))(2) and [Ru(2)Br(3)(NH(3))(6)](ZnBr(4)). The Ru-Ru distances in the tacn complexes are longer than those in the equivalent ammine complexes, probably as a result of steric interactions.  相似文献   

19.
The scope of N-atom transfer from the electrophilic ruthenium(VI) nitrido containing polyoxometalate [PW(11)O(39)Ru(VI)N](4-) has been extended to the N-heterocyclic carbene {CH(2)(Mes)N}(2)C and the coupling product {CH(2)(Mes)N}(2)CNH(2)(+) characterized by (1)H NMR and high-resolution mass spectrometry. Because guanidines display many fields of applications ranging from biology to supramolecular chemistry, this could afford an original route to the synthesis of cyclic guanidines. This also enlarges the potential of nitrido complexes in the synthesis of heterocycles, mainly illustrated in the literature through the formation of aziridines through N-atom transfer to alkenes. In the course of the reaction, the ruthenium(III)-containing polyoxometallic intermediate [PW(11)O(39)Ru(III){NC{N(Mes)CH(2)}(2)}](5-) has been thoroughly characterized by continuous-wave and pulsed electron paramagnetic resonance, which nicely confirms the presence of the organic moiety on the polyoxometallic framework, Ru K-edge X-ray absorption near-edge structure, and electrochemistry.  相似文献   

20.
The condensation reaction of resorcinol with cis-[ClP(μ-N(t)Bu)(2)PN(H)(t)Bu] produced a difunctional derivative 1,3-C(6)H(4)[OP(μ-N(t)Bu)(2)PN(H)(t)Bu](2) (1), whereas the similar reaction with [ClP(μ-N(t)Bu)](2) resulted in the formation of a 1:1 mixture of dimeric and tetrameric species, [{P(μ-N(t)Bu)}(2){1,3-(O)(2)-C(6)H(4)}](2) (2a) and [{P(μ-N(t)Bu)}(2){1,3-(O)(2)-C(6)H(4)}](4) (2b), which were separated by repeated fractional crystallization and column chromatography. The reaction of dimer 2a with H(2)O(2) and selenium produces tetrachalcogenides [{(O)P(μ-N(t)Bu)}(2){1,3-(O)(2)-C(6)H(4)}](2) (3) and [{(Se)P(μ-N(t)Bu)}(2){1,3-(O)(2)-C(6)H(4)}](2) (4), respectively. The reaction between the dimer (2a) and [Pd(μ-Cl)(η(3)-C(3)H(5))](2) or AuCl(SMe(2)) yielded the corresponding tetranuclear complexes, [{((Cl)(η(3)-C(3)H(5))Pd)P(μ-N(t)Bu)}(2){1,3-(O)(2)-C(6)H(4)}](2) (5) and [{(ClAu)P(μ-N(t)Bu)}(2){1,3-(O)(2)-C(6)H(4)}](2) (6) in good yield. The complexes 5 and 6 are the rare examples of phosphorus macrocycles containing two or more exocyclic transition metal fragments. Treatment of 1 with copper halides in 1:1 molar ratio resulted in the formation of one-dimensional (1D) coordination polymers, [(CuX){1,3-C(6)H(4){OP(μ-N(t)Bu)(2)PN(H)(t)Bu}}(2)](n) (7, X = Cl; 8, X = Br; 9, X = I), which showed the helical structure in solid state because of intramolecular hydrogen bonding, whereas similar reactions of 1 with 4 equiv of copper halides also produced 1D-coordination polymers, [(Cu(2)X(2))(2){1,3-C(6)H(4){OP(μ-N(t)Bu)(2)PN(H)(t)Bu}(2)}](n) (10, X = Cl; 11, X = Br; 12, X = I), but containing Cu(2)X(2) rhomboids instead of CuX linkers. The crystal structures of 1, 2a, 2b, 4, 7-9, and 12 were established by X-ray diffraction studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号