首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Six Mo(IV)-Cu(II) complexes, [Cu(tpa)](2)[Mo(CN)(8)]·15H(2)O (1, tpa = tris(2-pyridylmethyl)amine), [Cu(tren)](2)[Mo(CN)(8)]·5.25H(2)O (2, tren = tris(2-aminoethyl)amine), [Cu(en)(2)][Cu(0.5)(en)][Cu(0.5)(en)(H(2)O)][Mo(CN)(8)]·4H(2)O (3, en = ethylenediamine), [Cu(bapa)](3)[Mo(CN)(8)](1.5)·12.5H(2)O (4, bapa = bis(3-aminopropyl)amine), [Cu(bapen)](2)[Mo(CN)(8)]·4H(2)O (5, bapen = N,N'-bis(3-aminopropyl)ethylenediamine), and [Cu(pn)(2)][Cu(pn)][Mo(CN)(8)]·3.5H(2)O (6, pn = 1,3-diaminopropane), were synthesized and characterized. Single-crystal X-ray diffraction analyses show that 1-6 have different structures varying from trinuclear clusters (1-2), a one-dimensional belt (3), two-dimensional grids (4-5), to a three-dimensional structure (6). Magnetic and ESR measurements suggest that 1-6 exhibit thermally reversible photoresponsive properties on UV light irradiation through a Mo(IV)-to-Cu(II) charge transfer mechanism. A trinuclear compound [Cu(II)(tpa)](2)[Mo(V)(CN)(8)](ClO(4)) (7) was synthesized as a model of the photoinduced intermediate.  相似文献   

2.
The new antimonato polyoxovanadate [V(IV)(16)Sb(III)(4)O(42)(H(2)O)](8-) cluster (1a) is the main structural motif of the solvothermally obtained compound {(trenH(2))Zn(tren)}(2)[V(16)Sb(4)O(42)(H(2)O)]·xH(2)O (x = 6-10) (1) (tren = tris(2-aminoethyl)amine). The C(2)-symmetric cluster structure is closely related to the {V(18)O(42)} archetype. 1 crystallizes in the monoclinic space group C2/c with a = 30.7070(19) ?, b = 13.9512(5) ?, c = 23.1435(14) ?, β = 128.076(6)°, and V = 7804.8(7) ?(3). The orientation of the [Sb(III)(2)O(5)](4-) groups in each cluster leads to intermolecular Sb···O contacts and the formation of channels between the clusters. [Zn(tren)(trenH(2))] complexes with trigonal bipyramidal coordination environments are located between the [V(16)Sb(4)O(42)(H(2)O)](8-) anions, and form a three dimensional network with them via strong N-H···O hydrogen bonds. Up to 250 °C crystal water molecules are emitted, which are reversibly incorporated in humid air.  相似文献   

3.
Supertetrahedral compounds of chalcogenometalates (T3 cluster compounds) integrated with Ni-bpy (bpy = 2,2'-bipyridine) complex were prepared by a solvothermal technique. The compound [Ni(bpy)(3)](3)[H(4)In(10)S(20)]·bpy·2EG·6H(2)O (Mb-InS-1) (EG = ethylene glycol) consists of discrete T3 clusters of [H(4)In(10)S(20)](6-) with three [Ni(bpy)(3)](2+) cations. The compound [Ni(bpy)(3)](2)[H(2)In(10)S(19)]·bpy·2HEA·2H(2)O (Mb-InS-2) (EA = ethanolamine) is a 1-D polymer, in which zigzag T3 cluster chains are charge balanced by metal-bpy complex cations. The compound [Ni(bpy)(3)](7)[H(4)In(40)S(74)]·7Hbpy·3HEA·8H(2)O (Mb-InS-3) is a 2-D T3 polymer with cation layers of [Ni(bpy)(3)](2+). Integrating M-bpy complex cations into chalcogenido structures has been made with the aim of improving the photoabsorption of the materials. The electronic spectra showed the new bands of cation-anion charge-transfer (CACT) that is mainly caused by the S···H-C(py) contacts between the InS T3 supertetrahedral clusters and the [Ni(bpy)(3)](2+) cations.  相似文献   

4.
We investigate the reactivity of MoO(4)(2-) toward six organoammonium cations (+)(Me(3-x)H(x)N)(CH(2))(2)(NH(y)Me(3-y))(+) (x, y = 1-3) at different synthesis temperatures ranging from 70 to 180 °C. A total of 16 hybrid organic-inorganic materials have been synthesized at an initial pH of 2, via ambient pressure and hydrothermal routes, namely, (H(2)en)[Mo(3)O(10)]·H(2)O (1), (H(2)en)[Mo(3)O(10)] (2), (H(2)en)[Mo(5)O(16)] (3), (H(2)MED)(2)[Mo(8)O(26)]·2H(2)O (4), (H(2)MED)[Mo(5)O(16)] (5), (N,N-H(2)DMED)(2)[Mo(8)O(26)]·2H(2)O (6), (N,N-H(2)DMED)(2)[Mo(8)O(26)]·2H(2)O (7), (N,N'-H(2)DMED)(2)[Mo(8)O(26)] (8), (N,N'-H(2)DMED)[Mo(5)O(16)] (9), (H(2)TriMED)(2)[Mo(8)O(26)]·4H(2)O (10), (H(2)TriMED)(2)[Mo(8)O(26)]·2H(2)O (11), (H(2)TriMED)[Mo(7)O(22)] (12), (H(2)TMED)(2)[Mo(8)O(26)]·2H(2)O (13), (H(2)TMED)(2)[Mo(8)O(26)] (14), (H(2)TMED)(2)[Mo(8)O(26)] (15), and (H(2)TMED)[Mo(7)O(22)] (16). All of these compounds contain different polyoxomolybdate (Mo-POM) blocks, i.e., discrete β-[Mo(8)O(26)](4-) blocks in 6, 10, 13, 14, (1)/(∞)[Mo(3)O(10)](2-), and (1)/(∞)[Mo(8)O(26)](4-) polymeric chains in 1, 2, 4, 7, 8, and 15, respectively, and (2)/(∞)[Mo(5)O(16)](2-) and (2)/(∞)[Mo(7)O(22)](2-) layers in 3, 5, 9, 12, and 16, respectively. The structures of 5, 9, and 14 have been resolved by single-crystal X-ray analyses. The characterization of the different Mo-POM blocks in 1-16 by Fourier transform Raman spectroscopy is reported. The impact of the synthesis temperature on both the composition and topology of the Mo-POM blocks is highlighted.  相似文献   

5.
Reactions of TabHPF(6) (Tab = 4-(trimethylammonio)benzenethiolate) with three equiv. of M(OAc)(2)·2H(2)O (M = Zn, Cd) gave rise to two tetranuclear adamantane-like compounds, [M(4)(μ-Tab)(6)(Tab)(4)](PF(6))(8)·S (·S: M = Zn, S = DMF·4H(2)O; ·S: M = Cd, S = DMF·5H(2)O). The similar reactions of MCl(2) (M = Zn, Cd, Hg) with four equiv. of TabHPF(6) in the presence of Et(3)N afforded three mononuclear compounds [M(Tab)(4)](PF(6))(2)·S (·S: M = Zn, S = 2(H(2)O)(0.5); ·S: M = Cd, S = 2(H(2)O)(0.5); ·S: M = Hg, S = 2DMF). Treatment of the precursor complex or with equimolar MCl(2) and two equiv. of TabHPF(6) and Et(3)N produced one dinuclear compounds [M(μ-Tab)(Tab)(2)](2)(PF(6))(4)·2DMF·2H(2)O (·2DMF·2H(2)O: M = Zn; ·2DMF·2H(2)O: M = Hg) while analogous reactions of with CdCl(2)·2H(2)O gave rise to [Cd(μ-Tab)(2)(Tab)](2)(PF(6))(4)·2DMF (·2DMF). These compounds were characterized by elemental analysis, IR spectra, UV-Vis spectra, (1)H NMR and single-crystal X-ray crystallography. In or , four M(2+) ions and six S atoms of Tab ligands constitute an adamantane-like [M(4)(μ-S)(6)] cage in which each M(2+) ion is tetrahedrally coordinated by one terminal S and three bridged S atoms from four different Tab ligands. In , each M(2+) center of the [M(Tab)(4)](2+) dication is tetrahedrally coordinated by four S atoms of Tab ligand. Two [M(Tab)(2)](2+) dications in or are further bridged by a pair of Tab ligands to form a dimeric [M(μ-Tab)(Tab)(2)](2)(4+) structure. Each dimeric [(Tab)Cd(μ-Tab)(2)Cd(Tab)](4+) unit in is linked to its two neighboring units via two couples of bridging Tab ligands, thereby generating a unique 1D cationic chain. These results may provide useful information on interpreting structural data of MTs containing group 12 metals.  相似文献   

6.
Two novel three-dimensional (3D) extended vanadogermanate-based frameworks, [Co(pdn)(2)](3)[Co(2)(pdn)(4)][V(16)Ge(4)O(44)(OH)(2)(H(2)O)]·5H(2)O (1), [Co(2)(en)(3)][Co(en)(2)](2)[Co(en)(2)(H(2)O)][V(16)Ge(4)O(44)(OH)(2)(H(2)O)]·10.5H(2)O (2), (pdn = 1,2-propanediamine, en = ethylenediamine) have been synthesized under hydrothermal conditions via changing the organic amine. X-ray crystal structure analyses reveal that both frameworks are built of [V(16)Ge(4)O(44)(OH)(2)(H(2)O)](10-) anions and different Co-amine cations. They represent the first example of incorporating elemental Co into the extended vanadogermanate frameworks. Compound 1 shows a 3D framework with NaCl topology based on {V(16)Ge(4)} clusters as nodes, while compound 2 exhibits a 3D (4,6)-connected network with a Schl?fli symbol of (4(6)·6(7)·8(2))(2)(4(2)·6(4)), which is found for the first time in polyoxovanadate chemistry. The diverse types of metal-organoamine subunits play critical roles in the formation on the final structures. Furthermore, variable temperature susceptibility measurements on compounds 1 and 2 demonstrate the presence of anticipated rare ferrimagnetic behavior.  相似文献   

7.
Herein we report the intra- and inter-molecular assembly of a {V(5)O(9)} subunit. This mixed-valent structural motif can be stabilised as [V(5)O(9)(L(1-3))(4)](5-/9-) (1-3) by a range of organoarsonate ligands (L(1)-L(3)) whose secondary functionalities influence its packing arrangement within the crystal structures. Variation of the reaction conditions results in the dodecanuclear cage structure [V(12)O(14)(OH)(4)(L(1))(10)](4-) (4) where two modified convex building units are linked via two dimeric {O(4)V(IV)(OH)(2)V(IV)O(4)} moieties. Bi-functional phosphonate ligands, L(4)-L(6) allow the intramolecular connectivity of the {V(5)O(9)} subunit to give hybrid capsules [V(10)O(18)(L(4-6))(4)](10-) (5-7). The dimensions of the electrophilic cavities of the capsular entities are determined by the incorporated ligand type. Mass spectrometry experiments confirm the stability of the complexes in solution. We investigate and model the temperature-dependent magnetic properties of representative complexes 1, 4, 6 and 7 and provide preliminary cell-viability studies of three different cancer cell lines with respect to Na(8)H(2)[6]·36H(2)O and Na(8)H(2)[7]·2DMF·29H(2)O.  相似文献   

8.
A novel aluminoborate (NH(4))(6)[C(5)NH(12)](6)[Al(12)B(65)O(105)(OH)(33)]·(H(2)O)(15) (QD-6), has been synthesized under mild hydrothermal conditions and characterized by IR, elemental analysis, TGA, powder and single-crystal X-ray diffractions. This compound crystallizes in the rhombohedral space group R3 (No. 148) with the lattice constants a = 23.7421(2) ?, c = 24.7699(3) ?, V = 12091.9(2) ?(3), and Z = 3. QD-6 consists of two unprecedented aluminoborate clusters, [Al(6)B(34)O(54)(OH)(18)](6-) and [Al(6)B(31)O(51)(OH)(15)](6-), which are built from the same hexagon-like [B@Al(6)O(24)] clusters and [B(11)O(17)(OH)(6)] or [B(10)O(16)(OH)(5)] polyborates.  相似文献   

9.
The microwave-mediated self-assembly of [W(V)(CN)(8)](3-) with Cu(II) in the presence of pyrazole ligand resulted in the formation of three novel assemblies: Cu(II)(2)(Hpyr)(5)(H(2)O)[W(V)(CN)(8)](NO(3))·H(2)O (1), {Cu(II)(5)(Hpyr)(18)[W(V)(CN)(8)](4)}·[Cu(II)(Hpyr)(4)(H(2)O)(2)]·9H(2)O (2), and Cu(II)(4)(Hpyr)(10)(H(2)O)[W(V)(CN)(8)](2)(HCOO)(2)·4.5H(2)O (3) (Hpyr =1H-pyrazole). Single-crystal X-ray structure of 1 consists of cyanido-bridged 1-D chains of vertex-sharing squares topology. The structure of 2 reveals 2-D hybrid inorganic layer topology with large coordination spaces occupied by {Cu(Hpyr)(2)(H(2)O)(4)}(2+) ions. Compound 3 contains two types of cyanido-bridged 1-D chains of vertex-sharing squares linked together by formate ions in two directions forming hybrid inorganic-organic 3-D framework (I(1)O(2)). The magnetic measurements for 1-3 reveal a weak ferromagnetic coupling through Cu(II)-NC-W(V) bridges.  相似文献   

10.
Reactions of the precursors [Ni(macrocyclic ligand)](2+) with [W(CN)(8)](3-) afford two octacyanotungstate-based assemblies, (H(2)L(1))(0.5)[Ni(L(1))][W(CN)(8)]·2DMF·H(2)O (L(1) = 5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane) (1) and [Ni(L(2))](3)[W(CN)(8)](2)·4H(2)O (L(2) = 3,10-dipropyl-1,3,5,8,10,12-hexaazacyclotetradecane) (2). Single crystal X-ray diffraction shows that 1 consists of anionic one-dimensional (1D) linear chains, while 2 is built of 2D graphite-like layers with (6, 3) topology. Magnetic studies reveal that both complexes exhibit metamagnetic behavior from the spin-canted antiferromagnet to the ferromagnet induced by field.  相似文献   

11.
We report the synthesis and characterization of five novel Mo-containing polyoxometalate (POM) bisphosphonate complexes with nuclearities ranging from 4 to 12 and with fully reduced, fully oxidized, or mixed-valent (Mo(V), Mo(VI)) molybdenum, in which the bisphosphonates bind to the POM cluster through their two phosphonate groups and a deprotonated 1-OH group. The compounds were synthesized in water by treating [Mo(V)(2)O(4)(H(2)O)(6)](2+) or [Mo(VI)O(4)](2-) with H(2)O(3)PC(C(3)H(6)NH(2))OPO(3)H(2) (alendronic acid) or its aminophenol derivative, and were characterized by single-crystal X-ray diffraction and (31)P NMR spectroscopy. (NH(4))(6)[(Mo(V)(2)O(4))(Mo(VI)(2)O(6))(2)(O(3)PC(C(3)H(6)NH(3))OPO(3))(2)]·12H(2)O (1) is an insoluble mixed-valent species. [(C(2)H(5))(2)NH(2)](4)[Mo(V)(4)O(8)(O(3)PC(C(3)H(6)NH(3))OPO(3))(2)]·6H(2)O (2) and [(C(2)H(5))(2)NH(2)](6)[Mo(V)(4)O(8)(O(3)PC(C(10)H(14)NO)OPO(3))(2)]·18H(2)O (4) contain similar tetranuclear reduced frameworks. Li(8)[(Mo(V)(2)O(4)(H(2)O))(4)(O(3)PC(C(3)H(6)NH(3))OPO(3))(4)]·45H(2)O (3) and Na(2)Rb(6)[(Mo(VI)(3)O(8))(4)(O(3)PC(C(3)H(6)NH(3))OPO(3))(4)]·26H(2)O (5) are alkali metal salts of fully reduced octanuclear and fully oxidized dodecanuclear POMs, respectively. The activities of 2-5 (which are water-soluble) against three human tumor cell lines were investigated in vitro. Although 2-4 have weak but measurable activity, 5 has IC(50) values of about 10 μM, which is about four times the activity of the parent alendronate molecule on a per-alendronate basis, which opens up the possibility of developing novel drug leads based on Mo bisphosphonate clusters.  相似文献   

12.
The compounds [K(18-crown-6)](3)[Ir(Se(4))(3)] (1), [K(2.2.2-cryptand)](3)[Ir(Se(4))(3)].C(6)H(5)CH(3) (2), and [K(18-crown-6)(DMF)(2)][Ir(NCCH(3))(2)(Se(4))(2)] (3) (DMF = dimethylformamide) have been prepared from the reaction of [Ir(NCCH(3))(2)(COE)(2)][BF(4)] (COE = cyclooctene) with polyselenide anions in acetonitrile/DMF. Analogous reactions utilizing [Rh(NCCH(3))(2)(COE)(2)][BF(4)] as a Rh source produce homologues of the Ir complexes; these have been characterized by (77)Se NMR spectroscopy. [NH(4)](3)[Ir(S(6))(3)].H(2)O.0.5CH(3)CH(2)OH (4) has been synthesized from the reaction of IrCl(3).nH(2)O with aqueous (NH(4))(2)S(m)(). In the structure of [K(18-crown-6)](3)[Ir(Se(4))(3)] (1) the Ir(III) center is chelated by three Se(4)(2)(-) ligands to form a distorted octahedral anion. The structure contains a disordered racemate of the Deltalambdalambdalambda and Lambdadeltadeltadelta conformers. The K(+) cations are pulled out of the planes of the crowns and interact with Se atoms of the [Ir(Se(4))(3)](3)(-) anion. [K(2.2.2-cryptand)](3)[Ir(Se(4))(3)].C(6)H(5)CH(3) (2) possesses no short K.Se interactions; here the [Ir(Se(4))(3)](3)(-) anion crystallizes as the Deltalambdalambdadelta/Lambdadeltadeltalambda racemate. In the crystal structure of [K(18-crown-6)(DMF)(2)][Ir(NCCH(3))(2)(Se(4))(2)] (3), the K(+) cation is coordinated by an 18-crown-6 ligand and two DMF molecules and the anion comprises an octahedral Ir(III) center bound by two chelating Se(4)(2)(-) chains and two trans acetonitrile groups. The [Ir(Se(4))(3)](3)(-) and [Rh(Se(4))(3)](3)(-) anions undergo conformational transformations as a function of temperature, as observed by (77)Se NMR spectroscopy. The thermodynamics of these transformations are: [Ir(Se(4))(3)](3)(-), DeltaH = 2.5(5) kcal mol(-)(1), DeltaS = 11.5(2.2) eu; [Rh(Se(4))(3)](3)(-), DeltaH = 5.2(7) kcal mol(-)(1), DeltaS = 24.7(3.0) eu.  相似文献   

13.
The salts K[AuCl(2)(CN)(2)]·H(2)O (1), K[AuBr(2)(CN)(2)]·2H(2)O (2) and K[AuI(2)(CN)(2)]·?H(2)O (3) were synthesized and structurally characterized. Compound 1 crystallizes as a network of square planar [AuCl(2)(CN)(2)](-) anions separated by K(+) cations. However, 2 and 3 feature 2-D sheets built by the aggregation of [AuX(2)(CN)(2)](-) anions via weak, intermolecular X···X interactions. The mixed anion double salts K(3)[Au(CN)(2)](2)[AuBr(2)(CN)(2)]·H(2)O (4) and K(5)[Au(CN)(2)](4)[AuI(2)(CN)(2)]·2H(2)O (5) were also synthesized by cocrystallization of K[Au(CN)(2)] and the respective K[AuX(2)(CN)(2)] salts. Similarly to 2 and 3, the [Au(CN)(2)](-) and [AuX(2)(CN)(2)](-) anions form 2-D sheets via weak, intermolecular Au(I)···X and Au(I)···Au(I) interactions. In the case of 5, a rare unsupported Au(I)···Au(III) interaction of 3.5796(5) ? is also seen between the two anionic units. Despite the presence of Au(I) aurophilic interactions of 3.24-3.45 ?, neither 4 nor 5 exhibit any detectable emission at room temperature, suggesting that the presence of Au(I)···X or Au(I)···Au(III) interactions may affect the emissive properties.  相似文献   

14.
Chen H  Ma CB  Yuan DQ  Hu MQ  Wen HM  Liu QT  Chen CN 《Inorganic chemistry》2011,50(20):10342-10352
A family of Mn(III)/Ni(II) heterometallic clusters, [Mn(III)(4)Ni(II)(5)(OH)(4)(hmcH)(4)(pao)(8)Cl(2)]·5DMF (1·5DMF), [Mn(III)(3)Ni(II)(6)(N(3))(2)(pao)(10)(hmcH)(2)(OH)(4)]Br·2MeOH·9H(2)O (2·2MeOH·9H(2)O), [Mn(III)Ni(II)(5)(N(3))(4)(pao)(6)(paoH)(2)(OH)(2)](ClO(4))·MeOH·3H(2)O (3·MeOH·3H(2)O), and [Mn(III)(2)Ni(II)(2)(hmcH)(2)(pao)(4)(OMe)(2)(MeOH)(2)]·2H(2)O·6MeOH (4·2H(2)O·6MeOH) [paoH = pyridine-2-aldoxime, hmcH(3) = 2, 6-Bis(hydroxymethyl)-p-cresol], has been prepared by reactions of Mn(II) salts with [Ni(paoH)(2)Cl(2)], hmcH(3), and NEt(3) in the presence or absence of NaN(3) and characterized. Complex 1 has a Mn(III)(4)Ni(II)(5) topology which can be described as two corner-sharing [Mn(2)Ni(2)O(2)] butterfly units bridged to an outer Mn atom and a Ni atom through alkoxide groups. Complex 2 has a Mn(III)(3)Ni(II)(6) topology that is similar to that of 1 but with two corner-sharing [Mn(2)Ni(2)O(2)] units of 1 replaced with [Mn(3)NiO(2)] and [MnNi(3)O(2)] units as well as the outer Mn atom of 1 substituted by a Ni atom. 1 and 2 represent the largest 3d heterometal/oxime clusters and the biggest Mn(III)Ni(II) clusters discovered to date. Complex 3 possesses a [MnNi(5)(μ-N(3))(2)(μ-OH)(2)](9+) core, whose topology is observed for the first time in a discrete molecule. Careful examination of the structures of 1-3 indicates that the Mn/Ni ratios of the complexes are likely associated with the presence of the different coligands hmcH(2-) and/or N(3)(-). Complex 4 has a Mn(III)(2)Ni(II)(2) defective double-cubane topology. Variable-temperature, solid-state dc and ac magnetization studies were carried out on complexes 1-4. Fitting of the obtained M/(Nμ(B)) vs H/T data gave S = 5, g = 1.94, and D = -0.38 cm(-1) for 1 and S = 3, g = 2.05, and D = -0.86 cm(-1) for 3. The ground state for 2 was determined from ac data, which indicated an S = 5 ground state. For 4, the pairwise exchange interactions were determined by fitting the susceptibility data vs T based on a 3-J model. Complex 1 exhibits out-of-phase ac susceptibility signals, indicating it may be a SMM.  相似文献   

15.
Three organic-inorganic hybrid copper-lanthanide heterometallic germanotungstates, {[Cu(en)(2)(H(2)O)] [Cu(3)Eu(en)(3)(OH)(3)(H(2)O)(2)](α-GeW(11)O(39))}(2)·11H(2)O (1), {[Cu(en)(2)(H(2)O)][Cu(3)Tb(en)(3)(OH)(3)(H(2)O)(2)](α-GeW(11)O(39))}(2)·11H(2)O (2) and {[Cu(en)(2)(H(2)O)][Cu(3)Dy(en)(3)(OH)(3)(H(2)O)(2)](α-GeW(11)O(39))}(2)·10H(2)O (3) and three polyoxometalate hybrids built by lanthanide-containing germanotungstates and copper-ethylendiamine complexes, Na(2)H(6)[Cu(en)(2)(H(2)O)](8){Cu(en)(2)[La(α-GeW(11)O(39))(2)](2)}·18H(2)O (4), K(4)H(2)[Cu(en)(2)(H(2)O)(2)](5)[Cu(en)(2)(H(2)O)](2)[Cu(en)(2)](2){Cu(en)(2)[Pr(α-GeW(11)O(39))(2)](2)}·16H(2)O (5) and KNa(2)H(7)[enH(2)](3)[Cu(en)(2)(H(2)O)](2)[Cu(en)(2)](2){Cu(en)(2)[Er(α-GeW(11)O(39))(2)](2)}·15H(2)O (6) (en = ethylenediamine) have been hydrothermally synthesized and structurally characterized by elemental analyses, inductively coupled plasma atomic emission spectrometry (ICP-AES) analyses, IR spectra, powder X-ray diffraction (PXRD), X-ray photoelectron spectroscopy (XPS) and single-crystal X-ray diffraction. 1-3 are essentially isomorphous and their main skeletons display the interesting dimeric motif {[Cu(3)Ln(en)(3)(OH)(3)(H(2)O)(2)](α-GeW(11)O(39))}(2)(4-), which is constructed from two {Cu(3)LnO(4)} cubane anchored monovacant [α-GeW(11)O(39)](8-) fragments through two W-O-Ln-O-W linkers. The primary backbones of 4-6 exhibit the tetrameric architecture {Cu(en)(2)[Ln(α-GeW(11)O(39))(2)](2)}(24-) built by two 1?:?2-type [Ln(α-GeW(11)O(39))(2)](13-) moieties and one [Cu(en)(2)](2+) bridge, albeit they are not isostructural. To our knowledge, 1-6 are rare polyoxometalate derivatives consisting of copper-lanthanide heterometallic/lanthanide germanotungstate fragments. 1 exhibits antiferromagnetic coupling interactions within the {Cu(3)EuO(4)} cubane units, while 2 and 3 display dominant ferromagnetic interactions between the Tb(III)/Dy(III) and Cu(II) cations. The room-temperature solid-state photoluminescence properties of 1-3 have been investigated.  相似文献   

16.
Interaction of PdCl(2)(MeCN)(2) with 2 equiv of (S(P))-(t)BuPhP(O)H (1H) followed by treatment with Et(3)N gave [Pd((1)(2)H)](2)(micro-Cl)(2) (2). Reaction of 2 with Na[S(2)CNEt(2)] or K[N(PPh(2)S)(2)] afforded Pd[(1)(2)H](S(2)CNEt(2)) (3) or Pd[(1)(2)H)[N(PPh(2)S)(2)] (4), respectively. Treatment of 3 with V(O)(acac)(2) (acac = acetylacetonate) and CuSO(4) in the presence of Et(3)N afforded bimetallic complexes V(O)[Pd(1)(2)(S(2)CNEt(2))](2) (5) or Cu[Pd(1)(2)(S(2)CNEt(2))](2) (6), respectively. X-ray crystallography established the S(P) configuration for the phosphinous acid ligands in 3 and 6, indicating that 1H binds to Pd(II) with retention of configuration at phosphorus. The geometry around Cu in 6 is approximately square planar with the average Cu-O distance of 1.915(3) A. Treatment of 2 with HBF(4) gave the BF(2)-capped compound [Pd((1)(2)BF(2))](2)(micro-Cl)(2) (7). The solid-state structure of 7 containing a PdP(2)O(2)B metallacycle has been determined. Chloride abstraction of 7 with AgBF(4) in acetone/water afforded the aqua compound [Pd((1)(2)BF(2))(H(2)O)(2)][BF(4)] (8) that reacted with [NH(4)](2)[WS(4)] to give [Pd((1)(2)BF(2))(2)](2)[micro-WS(4)] (9). The average Pd-S and W-S distances in 9 are 2.385(3) and 2.189(3) A, respectively. Treatment of [(eta(6)-p-cymene)RuCl(2)](2) with 1H afforded the phosphinous acid adduct (eta(6)-p-cymene)RuCl(2)(1H) (10). Reduction of [CpRuCl(2)](x)() (Cp = eta(5)-C(5)Me(5)) with Zn followed by treatment with 1H resulted in the formation of the Zn(II) phosphinate complex [(CpRu(eta(6)-C(6)H(5)))(t)BuPO(2))](2)(ZnCl(2))(2) (11) that contains a Zn(2)O(4)P(2) eight-membered ring.  相似文献   

17.
Two neutral silver(I)-phenylethynide clusters incorporating the [((t)BuPO(3))(4)V(4)O(8)](4-) unit as an integral shell component, namely {(NO(3))(2)@Ag(16)(C≡CPh)(4)[((t)BuPO(3))(4)V(4)O(8)](2)(DMF)(6)(NO(3))(2)}·DMF·H(2)O and {[(O(2))V(2)O(6)](3)@Ag(43)(C≡CPh)(19)[((t)BuPO(3))(4)V(4)O(8)](3)(DMF)(6)}·5DMF·2H(2)O, have been isolated and characterized by X-ray crystallography. The central cavities of the Ag(16) and Ag(43) clusters are occupied by two NO(3)(-) and three [(O(2))V(2)O(6)](4-) template anions, respectively.  相似文献   

18.
The redox-active fac-[Mo(V)(mp)(3)](-) (mp: o-mercaptophenolato) bearing asymmetric O- and S-cation binding sites can bind with several kinds of metal ions such as Na(+), Mn(II), Fe(II), Co(II), Ni(II), and Cu(I). The fac-[Mo(V)(mp)(3)](-) metalloligand coordinates to Na(+) to form the contact ion pair {Na(+)(THF)(3)[fac-Mo(V)(mp)(3)]} (1), while a separated ion pair, n-Bu(4)N[fac-Mo(V)(mp)(3)] (2), is obtained by exchanging Na(+) with n-Bu(4)N(+). In the presence of asymmetric binding-sites, the metalloligand reacts with Mn(II)Cl(2)·4H(2)O, Fe(II)Cl(2)·4H(2)O, Co(II)Cl(2)·6H(2)O, and Ni(II)Cl(2)·6H(2)O to afford UV-vis-NIR spectra, indicating binding of these guest metal cations. Especially, for the cases of the Mn(II) and Co(II) products, trinuclear complexes, {M(H(2)O)(MeOH)[fac-Mo(V)(mp)(3)](2)}·1.5CH(2)Cl(2) (3·1.5CH(2)Cl(2) (M = Mn(II)), 4·1.5CH(2)Cl(2) (M = Co(II))), are successfully isolated and structurally characterized where the M are selectively bound to the hard O-binding sites of the fac-[Mo(V)(mp)(3)](-). On the other hand, a coordination polymer, {Cu(I)(CH(3)CN)[mer-Mo(V)(mp)(3)]}(n) (5), is obtained by the reaction of fac-[Mo(V)(mp)(3)](-) with [Cu(I)(CH(3)CN)(4)]ClO(4). In sharp contrast to the cases of 1, 3·1.5CH(2)Cl(2), and 4·1.5CH(2)Cl(2), the Cu(I) in 5 are selectively bound to the soft S-binding sites, where each Cu(I) is shared by two [Mo(V)(mp)(3)](-) with bidentate or monodentate coordination modes. The second notable feature of 5 is found in the geometric change of the [Mo(V)(mp)(3)](-), where the original fac-form of 1 is isomerized to the mer-[Mo(V)(mp)(3)](-) in 5, which was structurally and spectroscopically characterized for the first time. Such isomerization demonstrates the structural flexibility of the [Mo(V)(mp)(3)](-). Spectroscopic studies strongly indicate that the association/dissociation between the guest metal ions and metalloligand can be modulated by solvent polarity. Furthermore, it was also found that such association/dissociation features are significantly influenced by coexisting anions such as ClO(4)(-) or B(C(6)F(5))(4)(-). This suggests that coordination bonds between the guest metal ions and metalloligand are not too static, but are sufficiently moderate to be responsive to external environments. Moreover, electrochemical data of 1 and 3·1.5CH(2)Cl(2) demonstrated that guest metal ion binding led to enhance electron-accepting properties of the metalloligand. Our results illustrate the use of a redox-active chalcogenolato complex with a simple mononuclear structure as a multifunctional metalloligand that is responsive to chemical and electrochemical stimuli.  相似文献   

19.
Three new poloxovanadates were synthesized under solvothermal conditions and were structurally characterized. The two compounds with composition {Ni(dien)(2)}(3)[V(15)Sb(6)O(42)(H(2)O)]·nH(2)O (n = 12 and 8; dien = bis(2-aminoethyl)amine or diethylenetriamine) are pseudopolymorphs crystallizing in different space groups. The compounds were obtained by applying identical reaction slurries but using different reaction temperatures. Both compounds feature the [V(15)Sb(6)O(42)(H(2)O)](6-) anion which is the antimony analogue to the single molecule magnet [V(15)As(6)O(42)(H(2)O)](6-). Crystal data: 1 tetragonal space group P4, a = 46.9378(3), c = 16.51300(10) ? and V = 36380.7(4) ?(3). 2 rhombohedral space group R3c with a = 23.0517(4), c = 28.6216(5) ? and V = 13171.3(4) ?(3). In 1 several unusual short inter-cluster Sb···O contacts lead to the formation of three different super-clusters with composition V(60)Sb(24)O(168). The 12 unique {Ni(dien)(2)}(2+) complexes adopt all three possible configurations. In 2 the special arrangement of the {Ni(dien)(2)}(2+) complexes around the cluster anion prevents inter-cluster Sb···O contacts. The main structural motif of the third compound {Ni(dien)(2)}(4)[V(16)Sb(4)O(42)(H(2)O)] (3) is the [V(16)Sb(4)O(42)(H(2)O)](8-) cluster anion consisting of two perpendicular eight-membered rings of VO(5) pyramids. Two additional VO(5) polyhedra are located on opposite sides. Crystal data: 3 triclinic space group P1 = 13.5159(4), b = 14.2497(5), c = 14.9419(4) ?, α = 98.322(2), β = 114.080(2), γ = 110.130(2)° and V = 2326.35(12) ?(3).  相似文献   

20.
By introducing the flexible 1,1'-(1,4-butanediyl)bis(imidazole) (bbi) ligand into the polyoxovanadate system, five novel polyoxoanion-templated architectures based on [As(8)V(14)O(42)](4-) and [V(16)O(38)Cl](6-) building blocks were obtained: [M(bbi)(2)](2)[As(8)V(14)O(42)(H(2)O)] [M = Co (1), Ni (2), and Zn (3)], [Cu(bbi)](4)[As(8)V(14)O(42)(H(2)O)] (4), and [Cu(bbi)](6)[V(16)O(38)Cl] (5). Compounds 1-3 are isostructural, and they exhibit a binodal (4,6)-connected 2D structure with Schl?fli symbol (3(4) x 4(2))(3(4) x 4(4) x 5(4) x 6(3))(2), in which the polyoxoanion induces a closed four-membered circuit of M(4)(bbi)(4). Compound 4 exhibits an interesting 3D framework constructed from tetradentate [As(8)V(14)O(42)](4-) cluster anions and cationic ladderlike double chains. There exists a bigger M(8)(bbi)(6)O(2) circuit in 4. The 3D extended structure of 5 is composed of heptadentate [V(16)O(38)Cl](6-) anions and flexural cationic chains; the latter consists of six Cu(bbi) segments arranged alternately. It presents the largest 24-membered circuit of M(24)(bbi)(24) so far observed made of bbi molecules and transition-metal cations. Investigation of their structural relations shows the important template role of the polyoxoanions and the synergetic interactions among the polyoxoanions, transition-metal ions, and flexible ligand in the assembly process. The magnetic properties of compounds 1-3 were also studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号