首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An innovative analytical/computational approach is presented to provide maximum allowed probabilities (MAPs) of conformations in protein domains not rigidly connected. The approach is applied to calmodulin and to its adduct with alpha-synuclein. Calmodulin is a protein constituted by two rigid domains, each of them composed by two calcium-binding EF-hand motifs, which in solution are largely free to move with respect to one another. We used the N60D mutant of calmodulin, which had been engineered to selectively bind a paramagnetic lanthanide ion to only one of its four calcium binding sites, specifically in the second EF-hand motif of the N-terminal domain. In this way, pseudocontact shifts (pcs's) and self-orientation residual dipolar couplings (rdc's) measured on the C-terminal domain provide information on its relative mobility with respect to the domain hosting the paramagnetic center. Available NMR data for terbium(III) and thulium(III) calmodulin were supplemented with additional data for dysprosium(III), analogous data were generated for the alpha-synuclein adduct, and the conformations with the largest MAPs were obtained for both systems. The MAP analysis for calmodulin provides further information on the variety of conformations experienced by the system. Such variety is somewhat reduced in the calmodulin-alpha-synuclein adduct, which however still retains high flexibility. The flexibility of the calmodulin-alpha-synuclein adduct is an unexpected result of this research.  相似文献   

2.
Bren KL  Kellogg JA  Kaur R  Wen X 《Inorganic chemistry》2004,43(25):7934-7944
NMR spectroscopy has become a vital tool for studies of protein conformational changes and dynamics. Oxidized Fe(III)cytochromes c are a particularly attractive target for NMR analysis because their paramagnetism (S = (1)/(2)) leads to high (1)H chemical shift dispersion, even for unfolded or otherwise disordered states. In addition, analysis of shifts induced by the hyperfine interaction reveals details of the structure of the heme and its ligands for native and nonnative protein conformational states. The use of NMR spectroscopy to investigate the folding and dynamics of paramagnetic cytochromes c is reviewed here. Studies of nonnative conformations formed by denaturation and by anomalous in vivo maturation (heme attachment) are facilitated by the paramagnetic, low-spin nature of native and nonnative forms of cytochromes c. Investigation of the dynamics of folded cytochromes c also are aided by their paramagnetism. As an example of this analysis, the expression in Escherichia coli of cytochrome c(552) from Nitrosomonas europaea is reported here, along with analysis of its unusual heme hyperfine shifts. The results are suggestive of heme axial methionine fluxion in N. europaea ferricytochrome c(552). The application of NMR spectroscopy to investigate paramagnetic cytochrome c folding and dynamics has advanced our understanding of the structure and dynamics of both native and nonnative states of heme proteins.  相似文献   

3.
We have proposed that DNA-mediated charge transport (CT) is gated by base motions, with only certain base conformations being CT-active; a CT-active conformation can be described as a domain, a transiently extended pi-orbital defined dynamically by DNA sequence. Here, to explore these CT-active conformations, we examine the yield of base-base CT between photoexcited 2-aminopurine (Ap*) and guanine in DNA in rigid LiCl glasses at 77 K, where conformational rearrangement is effectively eliminated. Duplex DNA assemblies (35-mers) were constructed containing adenine bridges Ap(A)nG (n = 0-4). The yield of CT was monitored through fluorescence quenching of Ap* by G. We find, first, that the emission intensity of Ap* in all DNA duplexes increases dramatically upon cooling and becomes comparable to free Ap*. This indicates that all quenching of Ap* in duplex DNA is a dynamic process that requires conformational motion of the DNA bases. Second, DNA-mediated CT between Ap* and G is not observed at 77 K; rather than hindering the ability of DNA to transport charge, conformational motion is required. Moreover, the lack of DNA-mediated CT at 77 K, even through the shortest bridge, suggests that the static structures adopted upon cooling do not represent optimum CT-active conformations. These observations are consistent with our model of conformationally gated CT. Through conformational motion of the DNA bases, CT-active domains form and break-up transiently, both facilitating and limiting CT.  相似文献   

4.
Adenylate kinase from E. coli (AKE) is studied with molecular dynamics. AKE undergoes large-scale motions of its Lid and AMP-binding domains when its open form closes over its substrates, AMP and Mg2+-ATP. The third domain, the Core, is relatively stable during closing. The resulting trajectory is analyzed with a principal component analysis method that decomposes the atom motions into modes ordered by their decreasing contributions to the total protein fluctuation. Simulations at 303 K (normal T) and 500 K (high T) reveal that at both temperatures the first three modes account for 70% of the total fluctuation. The residues that contribute the most to these three modes are concentrated in the Lid and AMP-binding domains. Analysis of the normal T modes indicates that the Lid and AMP-binding domains sample a broad distribution of conformations indicating that AKE is designed to provide its substrates with a large set of conformations. The high T results show that the Lid initially closes toward the Core. Subsequently, the Lid rotates to a new stable conformation that is different from what is observed in the substrate-bound AKE. These results are discussed in the context of experimental data that indicate that adenylate kinases do sample more than one conformational state in solution and that each of these conformational states undergoes substantial fluctuations. A pair of residues is suggested for labeling that would be useful for monitoring distance fluctuations by energy transfer experiments.  相似文献   

5.
We introduce a family of procedures designed to sample side-chain conformational space at particular locations in protein structures. These procedures (CRSP) use intensive cycles of random assignment of side-chain conformations followed by minimization to determine all the conformations that a group of side-chains can adopt simultaneously. First, we consider a procedure evolving in the dihedral space (dCRSP). Our results suggest that it can accurately map low-energy conformations adopted by clusters of side-chains of a protein. dCRSP is relatively insensitive to various important parameters, and it is sufficiently accurate to capture efficiently the constraint induced by the environment on the conformations a particular side-chain can adopt. Our results show that dCRSP, compared with molecular dynamics (MD), can overcome the problem of the limited set of conformations reached in a reasonable amount of simulations. Next, we introduce procedures (vCRSP) in which valence angles are relaxed, and we assess how efficiently they quantify the conformational entropy of side-chains in the protein native state. For simple peptides, entropies obtained with vCRSP are fully compatible with those obtained with a Monte Carlo procedure. For side-chains in a protein environment, however, vCRSP appears of limited use. Finally, we consider a two-step procedure that combines dCRSP and vCRSP. Our tests suggest that it is able to overcome the limitations of vCRSP. We also note that dCRSP provides a reasonable initial approximation. This family of procedures offers promise in quantifying the contribution of conformational entropy to the energetics of protein structures.  相似文献   

6.
Residual dipolar couplings (RDCs) are widely used as orientation-dependent NMR restraints to improve the resolution of the NMR conformational ensemble of biomacromolecules and define the relative orientation of multidomain proteins and protein complexes. However, the interpretation of RDCs is complicated by the intrinsic degeneracy of analytical solutions and protein dynamics that lead to ill-defined orientations of the structural domains (ghost orientations). Here, we illustrate how restraints from paramagnetic relaxation enhancement (PRE) experiments lift the orientational ambiguity of multidomain membrane proteins solubilized in detergent micelles. We tested this approach on monomeric phospholamban (PLN), a 52-residue membrane protein, which is composed of two helical domains connected by a flexible loop. We show that the combination of classical solution NMR restraints (NOEs and dihedral angles) with RDC and PRE constraints resolves topological ambiguities, improving the convergence of the PLN structural ensemble and giving the depth of insertion of the protein within the micelle. The combination of RDCs with PREs will be necessary for improving the accuracy and precision of membrane protein conformational ensembles, where three-dimensional structures are dictated by interactions with the membrane-mimicking environment rather than compact tertiary folds common in globular proteins.  相似文献   

7.
Synthetic metal complexes can be used as paramagnetic probes for the study of proteins and protein complexes. Herein, two transition metal NMR probes (TraNPs) are reported. TraNPs are attached through two arms to a protein to generate a pseudocontact shift (PCS) using cobalt(II), or paramagnetic relaxation enhancement (PRE) with manganese(II). The PCS analysis of TraNPs attached to three different proteins shows that the size of the anisotropic component of the magnetic susceptibility depends on the probe surroundings at the surface of the protein, contrary to what is observed for lanthanoid‐based probes. The observed PCS are relatively small, making cobalt‐based probes suitable for localized studies, such as of an active site. The obtained PREs are stronger than those obtained with nitroxide spin labels and the possibility to generate both PCS and PRE offers advantages. The properties of TraNPs in comparison with other cobalt‐based probes are discussed.  相似文献   

8.
Synthetic metal complexes can be used as paramagnetic probes for the study of proteins and protein complexes. Herein, two transition metal NMR probes (TraNPs) are reported. TraNPs are attached through two arms to a protein to generate a pseudocontact shift (PCS) using cobalt(II), or paramagnetic relaxation enhancement (PRE) with manganese(II). The PCS analysis of TraNPs attached to three different proteins shows that the size of the anisotropic component of the magnetic susceptibility depends on the probe surroundings at the surface of the protein, contrary to what is observed for lanthanoid‐based probes. The observed PCS are relatively small, making cobalt‐based probes suitable for localized studies, such as of an active site. The obtained PREs are stronger than those obtained with nitroxide spin labels and the possibility to generate both PCS and PRE offers advantages. The properties of TraNPs in comparison with other cobalt‐based probes are discussed.  相似文献   

9.
We describe the synthesis and a novel approach to the conformational analysis of 2,2'-bipyridines (bpy) bearing aromatic rich Frechet-type dendritic wedges of the first and second generation as substituents. The evaporation of solutions of these new ligands on graphite surfaces under ambient conditions results in the formation of self-organized monolayers. Scanning tunneling microscopy (STM) investigations of the monolayers under ambient conditions (air, 298 K) gave images at submolecular and near-atomic resolution. The analysis of the STM images includes the following processes: (i) identification and reproduction of potential homoconformational domains, (ii) exclusion of improper data using quality criteria for drift and feedback artifacts, (iii) compilation of running averages and checking for averaging artifacts, (iv) analysis of three-dimensional and contour plots, (v) calculation of the HOMO properties of the free molecules, and (vi) final conformational assignment based on all accessible information. Following this procedure, two different conformations could be assigned to domains observed in the monolayers of the first-generation (G1) and second-generation (G2) dendritic compounds. Homoconformational domains are observed side-by-side. The different conformations arise from syn or anti arrangements at the ether substituents. An additional conformational effect is found upon treating the G1 domains with HCl gas, when a partial rearrangement of the bpy from trans to cis occurs, concomitant with protonation.  相似文献   

10.
A comparison of the O(2) equilibrium curves of sperm-whale myoglobin locked in the liganded (CO-bound) and unliganded (deoxy) conformations by encapsulation in a wet porous sol-gel silica reveals a marked difference between them. The CO-bound state-locked myoglobin showed a nearly monophasic (hyperbolic) O(2) equilibrium curve with a dissociation constant of 0.2 Torr, which is smaller than that of myoglobin in solution (0.5 Torr). On the other hand, the deoxy state-locked myoglobin exhibited a multiphasic O(2) equilibrium curve that can be represented by a sum of three independent components with dissociation constants of 0.19, 0.90, and 44 Torr, respectively, indicating that deoxymyoglobin exists in multiple conformations. These results show that myoglobin can be frozen into ligand-dependent conformational populations at room temperature in the wet sol-gel and suggest that the overall O(2) equilibrium properties of myoglobin in solution are generated by a redistribution of protein conformational populations in response to ligand binding.  相似文献   

11.
In conventional “Venus Flytrap” mechanism, substrate-binding proteins (SBPs) interconvert between the open and closed conformations. Upon ligand binding, SBPs form a tightly closed conformation with the ligand bound at the interface of two domains. This mechanism was later challenged by many type III SBPs, such as the vitamin B12-binding protein BtuF, in which the apo- and holo-state proteins adopt very similar conformations. Here, we combined molecular dynamics simulation and Markov state model analysis to study the conformational dynamics of apo- and B12-bound BtuF. The results indicate that the crystal structures represent the only stable conformation of BtuF. Meanwhile, both apo- and holo-BtuF undergo large-scale interdomain motions with little energy cost. B12 binding casts little restraints on the interdomain motions, suggesting that ligand binding affinity is enhanced by the remaining conformational entropy of holo-BtuF. These results reveal a new paradigm of ligand recognition mechanism of SBPs. © 2019 Wiley Periodicals, Inc.  相似文献   

12.
Two cyclen-derived Gd probes, [Gd-DOTAM](3+) and [Gd-DOTP](5-) (DOTAM = 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetamide; DOTP = 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrakis(methylenephosphonate)), were assessed as paramagnetic relaxation enhancement (PRE)-inducing probes for characterization of protein-protein interactions. Two proteins, Desulfovibrio gigas rubredoxin and Desulfovibrio gigas cytochrome c(3), were used as model partners. In a (1)H NMR titration it was shown that [Gd-DOTP](5-) binds to cytochrome c(3) near heme IV, causing pronounced PREs, characterized by line width broadenings of the heme methyl resonances at ratios as low as 0.08. A K(d) of 23 ± 1 μM was calculated based on chemical shift perturbation of selected heme methyl resonances belonging to three different heme groups, caused by allosteric effects upon [Gd-DOTP](5-) binding to cytochrome c(3) at a molar ratio of 2. The other probe, [Gd-DOTAM](3+), caused PREs on a well-defined patch near the metal center of rubredoxin (especially the patch constituted by residues D19-G23 and W37-S45, which broaden beyond detection). This effect was partially reversed for some resonances (C6-Y11, in particular) when cytochrome c(3) was added to this system. Both probes were successful in causing reversible PREs at the partner binding site, thus showing to be good probes to identify partners' binding sites and since the interaction is reversible to structurally characterize protein complexes by better defining the complex interface.  相似文献   

13.
14.
The 11-undecanolide enthalpy of vaporization is obtained from the temperature dependence of the vapor pressure measured by transpiration. A conformational analysis of 8-octanolide (I), 11-undecanolide (II), and 13-tridecanolide (III) is performed. Quantum-chemical calculations are performed to study the moments of inertia, vibrational spectra, and most favorable conformations. The ideal gas thermodynamic properties of these compounds in the temperature range of 0-1500 K are determined. A procedure for the additive determination of polynomial coefficients for temperature-dependent properties is developed to assess the thermochemical data for lactones, lactides, and carboxylic hydroxyacids at 298.15–1000 K.  相似文献   

15.
We analyzed the thermodynamic basis for improvement of a binding protein by disulfide engineering. The Z(SPA)(-)(1) affibody binds to its Z domain binding partner with a dissociation constant K(d) = 1.6 microM, and previous analyses suggested that the moderate affinity is due to the conformational heterogeneity of free Z(SPA)(-)(1) rather than to a suboptimal binding interface. Studies of five stabilized Z(SPA)(-)(1) double cystein mutants show that it is possible to improve the affinity by an order of magnitude to K(d) = 130 nM, which is close to the range (20 to 70 nM) observed with natural Z domain binders, without altering the protein-protein interface obtained by phage display. Analysis of the binding thermodynamics reveals a balance between conformational entropy and desolvation entropy: the expected and favorable reduction of conformational entropy in the best-binding Z(SPA)(-)(1) mutant is completely compensated by an unfavorable loss of desolvation entropy. This is consistent with a restriction of possible conformations in the disulfide-containing mutant and a reduction of average water-exposed nonpolar surface area in the free state, resulting in a smaller conformational entropy penalty, but also a smaller change in surface area, for binding of mutant compared to wild-type Z(SPA)(-)(1). Instead, higher Z domain binding affinity in a group of eight Z(SPA)(-)(1) variants correlates with more favorable binding enthalpy and enthalpy-entropy compensation. These results suggest that protein-protein binding affinity can be improved by stabilizing conformations in which enthalpic effects can be fully explored.  相似文献   

16.
In this investigation, semiempirical NMR chemical shift prediction methods are used to evaluate the dynamically averaged values of backbone chemical shifts obtained from unbiased molecular dynamics (MD) simulations of proteins. MD-averaged chemical shift predictions generally improve agreement with experimental values when compared to predictions made from static X-ray structures. Improved chemical shift predictions result from population-weighted sampling of multiple conformational states and from sampling smaller fluctuations within conformational basins. Improved chemical shift predictions also result from discrete changes to conformations observed in X-ray structures, which may result from crystal contacts, and are not always reflective of conformational dynamics in solution. Chemical shifts are sensitive reporters of fluctuations in backbone and side chain torsional angles, and averaged (1)H chemical shifts are particularly sensitive reporters of fluctuations in aromatic ring positions and geometries of hydrogen bonds. In addition, poor predictions of MD-averaged chemical shifts can identify spurious conformations and motions observed in MD simulations that may result from force field deficiencies or insufficient sampling and can also suggest subsets of conformational space that are more consistent with experimental data. These results suggest that the analysis of dynamically averaged NMR chemical shifts from MD simulations can serve as a powerful approach for characterizing protein motions in atomistic detail.  相似文献   

17.
18.
A three-step approach for multiscale modeling of protein conformational changes is presented that incorporates information about preferred directions of protein motions into a geometric simulation algorithm. The first two steps are based on a rigid cluster normal-mode analysis (RCNMA). Low-frequency normal modes are used in the third step (NMSim) to extend the recently introduced idea of constrained geometric simulations of diffusive motions in proteins by biasing backbone motions of the protein, whereas side-chain motions are biased toward favorable rotamer states. The generated structures are iteratively corrected regarding steric clashes and stereochemical constraint violations. The approach allows performing three simulation types: unbiased exploration of conformational space; pathway generation by a targeted simulation; and radius of gyration-guided simulation. When applied to a data set of proteins with experimentally observed conformational changes, conformational variabilities are reproduced very well for 4 out of 5 proteins that show domain motions, with correlation coefficients r > 0.70 and as high as r = 0.92 in the case of adenylate kinase. In 7 out of 8 cases, NMSim simulations starting from unbound structures are able to sample conformations that are similar (root-mean-square deviation = 1.0-3.1 ?) to ligand bound conformations. An NMSim generated pathway of conformational change of adenylate kinase correctly describes the sequence of domain closing. The NMSim approach is a computationally efficient alternative to molecular dynamics simulations for conformational sampling of proteins. The generated conformations and pathways of conformational transitions can serve as input to docking approaches or as starting points for more sophisticated sampling techniques.  相似文献   

19.
A highly efficient method, Conformation‐Family Monte Carlo (CFMC), has been developed for searching the conformational space of a macromolecule and identifying its low‐energy conformations. This method maintains a database of low‐energy conformations that are clustered into families. The conformations in this database are improved iteratively by a Metropolis‐type Monte Carlo procedure, together with energy minimization, in which the search is biased towards investigating the regions of the lowest‐energy families. The CFMC method has the advantages of our earlier potential‐smoothing methods (in that it `coarse‐grains' the conformational space and exploits information about nearby low‐energy states), but avoids their disadvantages (such as the displacement of the global minimum at large smoothings). The CFMC method is applied to a test protein, domain B of Staphylococcal protein A. Independent CFMC runs yielded the same low‐energy families of conformations from random starts, indicating that the thermodynamically relevant conformational space of this protein has been explored thoroughly. The CFMC method is highly efficient, performing as well as or better than competing methods, such as Monte Carlo with minimization, conformational‐space annealing, and the self‐consistent basin‐to‐deformed‐basin method.  相似文献   

20.
The coordination properties of the macrocyclic receptor N,N'-bis[(6-carboxy-2-pyridyl)methylene]-1,10-diaza-15-crown-5 (H(2)bp15c5) towards the lanthanide ions are reported. Thermodynamic stability constants were determined by pH-potentiometric titration at 25 °C in 0.1 M KCl. A smooth decrease in complex stability is observed upon decreasing the ionic radius of the Ln(III) ion from La [log K(LaL) = 12.52(2)] to Lu [log K(LuL) = 10.03(6)]. Luminescence lifetime measurements recorded on solutions of the Eu(III) and Tb(III) complexes confirm the absence of inner-sphere water molecules in these complexes. (1)H and (13)C NMR spectra of the complexes formed with the diamagnetic La(III) metal ion were obtained in D(2)O solution and assigned with the aid of HSQC and HMBC 2D heteronuclear experiments, as well as standard 2D homonuclear COSY and NOESY spectra. The (1)H NMR spectra of the paramagnetic Ce(III), Eu(III) and Yb(III) complex suggest nonadentate binding of the ligand to the metal ion. The syn conformation of the ligand in [Ln(bp15c5)](+) complexes implies the occurrence of two helicities, one associated with the layout of the picolinate pendant arms (absolute configuration Δ or Λ), and the other to the five five-membered chelate rings formed by the binding of the crown moiety (absolute configuration δ or λ). A detailed conformational analysis performed with the aid of DFT calculations (B3LYP model) indicates that the complexes adopt a Λ(λδ)(δδλ) [or Δ(δλ)(λλδ)] conformation in aqueous solution. Our calculations show that the interaction between the Ln(III) ion and several donor atoms of the crown moiety is weakened as the ionic radius of the metal ion decreases, in line with the decrease of complex stability observed on proceeding to the right across the lanthanide series.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号