首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The analysis of cellular lipids and phospholipids has been of continuously increasing research interest due to the importance of these molecules in psychological process. In this work, a mass spectrometry-based method for direct, in situ analysis of lipids in cells was reported. Mammalian cells were directly cultured on ITO-coated glass and then analyzed by matrix-assisted laser desorption ionization-mass spectrometry (MALDI-MS). The matrix application process was achieved by electrospray coating, which produced a homogenous layer of matrix crystal on the sample. The detection results and reproducibility are satisfactory. With this method, a profile of abundant membrane lipids is generated, which is characteristic of cell type. In conclusion, this in situ MALDI-MS cellular lipid analysis method provides a platform for sensitive and robust molecular profiling of mammalian cells.  相似文献   

2.
In this paper a rapid and highly efficient method for controlled incorporation of fluorescent lipids into living mammalian cells is introduced. Here, the fluorescent molecules have two consecutive functions: First, they trigger rapid membrane fusion between cellular plasma membranes and the lipid bilayers of their carrier particles, so called fusogenic liposomes, and second, after insertion into cellular membranes these molecules enable fluorescence imaging of cell membranes and membrane traffic processes. We tested the fluorescent derivatives of the following essential membrane lipids for membrane fusion: Ceramide, sphingomyelin, phosphocholine, phosphatidylinositol-bisphosphate, ganglioside, cholesterol, and cholesteryl ester. Our results show that all probed lipids could more efficiently be incorporated into the plasma membrane of living cells than by using other methods. Moreover, labeling occurred in a gentle manner under classical cell culture conditions reducing cellular stress responses. Staining procedures were monitored by fluorescence microscopy and it was observed that sphingolipids and cholesterol containing free hydroxyl groups exhibit a decreased distribution velocity as well as a longer persistence in the plasma membrane compared to lipids without hydroxyl groups like phospholipids or other artificial lipid analogs. After membrane staining, the fluorescent molecules were sorted into membranes of cell organelles according to their chemical properties and biological functions without any influence of the delivery system.  相似文献   

3.
Lipids are important in several biological processes because they act as signalling and regulating molecules, or, locally, as membrane components that modulate protein function. This paper reports the pattern of lipid composition of dendritic cells (DCs), a cell type of critical importance in inflammatory and immune responses. After activation by antigens, DCs undergo drastic phenotypical and functional transformations, in a process known as maturation. To better characterize this process, changes of lipid profile were evaluated by use of a lipidomic approach. As an experimental model of DCs, we used a foetal skin-derived dendritic cell line (FSDC) induced to mature by treatment with lipopolysaccharide (LPS). The results showed that LPS treatment increased ceramide (Cer) and phosphatidylcholine (PC) levels and reduced sphingomyelin (SM) and phosphatidylinositol (PI) content. Mass spectrometric analysis of a total lipid extract and of each class of lipids revealed that maturation promoted clear changes in ceramide profile. Quantitative analysis enabled identification of an increase in the total ceramide content and enhanced Cer at m/z 646.6, identified as Cer(d18:1/24:1), and at m/z 648.6, identified as Cer(d18:1/24:0). The pattern of change of these lipids give an extremely rich source of data for evaluating modulation of specific lipid species triggered during DC maturation.  相似文献   

4.
We previously reported that splenic extract from lipopolysaccharide (LPS)‐challenged guinea pigs inhibits the exaggerated febrile response of splenectomized guinea pigs, suggesting that the spleen generates an inhibitory factor. Earlier results indicate that the factor is a lipid. In an effort to identify this factor, lipid fractions, isolated from splenic extracts of control and LPS‐challenged guinea pigs, were analyzed with emphasis on identifying and quantifying prostanoids, which according to current knowledge are the likely bioactive factors. Prostaglandins have been extensively implicated in central and peripheral thermoregulation, and thus these lipids were targeted for characterization in the spleen. Analysis was done on the splenic extracts using solid‐phase extraction, analytical and preparative thin‐layer chromatography (TLC) and high‐performance liquid chromatography–mass spectrometry (HPLC‐MS/MS). Four prostaglandins (PGs, 6‐keto‐PGF1α, PGF2α, PGE2 and PGD2) were identified and quantified. Our data shows that these PG levels are doubled in LPS‐treated guinea pig spleen compared with the control group. The methods used in this investigation to characterize PG in the spleen offer significant advantages over immunoassays previously used to identify and quantify PG in the spleen and other biological tissues. These methods will be utilized in further research needed to definitively characterize the role of splenic‐derived PG in modulation of the febrile response induced by LPS. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
A two‐dimensional (2D) hydrophilic interaction liquid chromatography (HILIC) and reverse‐phase (RP) liquid chromatography (LC) system coupled with triple‐quadrupole mass spectrometry (MS) was developed to comprehensively profile ceramides and phosphatidylcholine in extracted biological samples. Briefly, the 2D HILIC‐RPLC system used a silica HILIC column operated in the first dimension to distinguish the lipid classes and a BEH C18 column operated in the second dimension to separate the lipid species of the same class. The regression linearity of each lipid was satisfactory in both systems; however, the absolute matrix effect factor was reduced in 2D LC‐MS/MS system. Limits of detection of 2D LC‐MS/MS system were 2‐ to 3‐fold lower compared with one‐dimensional RPLC‐MS/MS. The recovery from the sample ranged from 84.5 to 110%. To summarize, the developed method was proven to be accurate and producible, as relative standard deviations remained <20% at three spiked levels. The efficiency of this newly developed system was applied to measure changes of lipids in the liver of mice after naphthalene treatment. Orthogonal projection to latent structures‐discriminant analysis discriminated the lipids from control and the treatment group. We concluded that 2D LC‐MS/MS is a promising method to assist lipidomic studies of complex biological samples. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
In pre‐implantation embryos, lipids play key roles in determining viability, cryopreservation and implantation properties, but often their analysis is analytically challenging because of the few picograms of analytes present in each of them. Matrix‐assisted laser desorption/ionization mass spectrometry (MALDI‐MS) allows obtaining individual phospholipid profiles of these microscopic organisms. This technique is sensitive enough to enable analysis of individual intact embryos and monitoring the changes in membrane lipid composition in the early stages of development serving as screening method for studies of biology and biotechnologies of reproduction. This article introduces an improved, more comprehensive MALDI‐MS lipid fingerprinting approach that considerably increases the lipid information obtained from a single embryo. Using bovine embryos as a biological model, we have also tested optimal sample storage and handling conditions before the MALDI‐MS analysis. Improved information at the molecular level is provided by the use of a binary matrix that enables phosphatidylcholines, sphingomyelins, phosphatidylserines, phosphatidylinositols and phosphoethanolamines to be detected via MALDI(±)‐MS in both the positive and negative ion modes. An optimal MALDI‐MS protocol for lipidomic monitoring of a single intact embryo is therefore reported with potential applications in human and animal reproduction, cell development and stem cell research. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
In the middle of the 1960s, I began graduate school and at the same time started on the path of using mass spectrometry to gain insight into various aspects of lipid biochemistry. This was not a straight path but one that went from organic geochemistry, to lunar sample analysis, to a pursuit of the structure of an elusive and very active, lipid mediator slow reacting substance of anaphylaxis (SRS‐A). The discovery of the structure of SRS‐A opened important questions about phospholipid biochemistry and the arachidonate cycle in cells. I have written this reflection to highlight the various advances in mass spectrometry that occurred during this time that had a great impact on our ability to study lipid biochemistry. I specifically applied these new advances to studies of leukotriene biosynthesis in vivo, leukotriene metabolism, and arachidonate‐containing phospholipids that are essential in providing arachidonic acid for the 5‐lipoxygenase pathway. Along the way, imaging mass spectrometry was shown to be a powerful tool to probe lipids as they exist in tissue slices. We found this as just one of the ways to use the emerging technology of lipidomics to study human pathophysiology. Our studies of neutral lipids and oxidized phospholipids were especially challenging due to the total number of molecular species that could be found in cells. Many challenges remain in using mass spectrometry for lipid studies, and a few are presented.  相似文献   

8.
Ceramide has a large effect on the properties of biological membranes, increasing lipid order and promoting lateral phase separation, and plays an important role in cell signaling. This review provides an overview of recent studies of the effects of direct ceramide incorporation and enzymatic ceramide generation on planar supported membranes, including lipid monolayers and supported lipid bilayers. Recent studies have focused on understanding the nucleation, growth and morphology of ceramide gel domains, characterizing the properties of ceramide-rich membrane phases and investigating the effects of ceramide on phase-separated membranes with co-existing liquid-ordered and fluid phases, as models for cellular membranes.  相似文献   

9.
Bacterial resistance to antibiotics has become an increasing threat, requiring not only the development of new targets in drug discovery, but more importantly, a better understanding of cellular response. In the current study, three closely related Escherichia coli strains, a wild type (MG1655) and an isogenic pair derived from the wild type (DPB635 and DPB636) are studied following exposure to sub lethal concentrations of antibiotic (norfloxacin) over time. In particular, genotype similarities between the three strains were assessed based on the lipid regulation response (e.g. presence/absence and up/down regulation). Lipid identification was performed using direct surface probe analysis (matrix‐assisted laser desorption/ionization, MALDI), coupled to high‐resolution mass spectrometry (Fourier transform ion cyclotron resonance mass spectrometry, FT‐ICR MS) followed by statistical analysis of variability and reproducibility across batches using internal standards. Inspection of the lipid profile showed that for the MG1655, DPB635 and DPB636 E. coli strains, a similar distribution of the altered lipids was observed after exposure to norfloxacin antibiotic (e.g. fatty acids and glycerol phospholipids are up and down regulated, respectively). Additionally, variations in the lipid distribution resemble the extent to which each strain can combat the antibiotic exposure. That is, the topA66 topoisomerase I mutation of DPB636 translates into diminished response related to antibiotic sensitivity when compared to MG1655 and the DPB635 strains. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
Peroxidation of cellular membrane lipids, rich in polyunsaturated fatty acids, generates electrophilic, α, β-unsaturated aldehydes such as 4-hydroxy-2-nonenal (HNE). HNE is a highly reactive and cytotoxic molecule that can react with the nucleophilic sites in proteins causing posttranslational modification. The identification of protein targets is an important first step; however, quantitative profiling of site-specific modifications is necessary to understand the biological impact of HNE-induced carbonylation. We report a method that uses light (H(12)CHO) and heavy (D(13)CDO) isotopic variant of formaldehyde to differentially label primary amines (N-termini and ε-amino group of lysines) in peptides through reductive methylation and, combined with selective enrichment of modified peptides, permits comparison of the extent of carbonylation in two samples after mixing for simultaneous liquid chromatography-mass spectrometry. Specifically, dimethyl-labeled peptide carbonyls were fractionated from unmodified peptides using solid-phase hydrazide chemistry to immobilize them to porous glass beads and, after removing the unmodified peptides by thoroughly washing the beads, subsequently recover them by acid-catalyzed hydrolysis. The method was developed using HNE-modified synthetic peptides and also showing enrichment from a complex matrix of digested human plasma proteins. Applicability was confirmed using apomyoglobin as an analyte, implicating thereby its potential value to proteome-wide identification and relative quantification of posttranslational protein carbonylation with residue-specific information. Because HNE attachment may not necessarily cause change in protein abundance, this modification-focused quantification should facilitate the characterization of accompanied changes in protein function and, also, provide important insights into molecular signaling mechanisms and a better understanding of cellular processes associated with oxidative stress.  相似文献   

11.
Normal-phase high-performance liquid chromatography (NP-HPLC) coupled to atmospheric pressure ionization mass spectrometry (APCI-MS) allows quantitative analysis of endogenous ceramide and dihydroceramide species from crude lipid extracts. Qualitative information for the species comes from observation of differences in chromatographic and mass spectrometric behavior between species (Pettus et al. Rapid Commun. Mass Spectrom. 2003; 17: 1017-1026). Quantitative analysis is achieved by (1) use of a synthetic internal standard as an extraction and injection control, (2) lack of salt adduction, ion suppression, or other matrix effects in APCI mode, and (3) consistent fragmentation and ionization of external standards across the physiologically relevant concentration range found in endogenous lipid samples. Application to the analysis and quantitation of ceramide and dihydroceramide from various cell lines is demonstrated. The results from APCI-MS analysis corroborate and enhance information acquired from use of the diacylglycerol kinase assay for total ceramide measurement. This technique readily allows simultaneous quantitation of ceramide and dihydroceramide species.  相似文献   

12.
Soft‐ionization methods are currently at the forefront of developing novel methods for analysing degraded archaeological organic residues. Here, we present little‐used soft ionization method of matrix assisted laser desorption/ionization‐Fourier transform‐ion cyclotron resonance‐mass spectrometry (MALDI‐FT‐ICR‐MS) for the identification of archaeological lipid residues. It is a high‐resolution and sensitive method with low limits of detection capable of identifying lipid compounds in small concentrations, thus providing a highly potential new technique for the analysis of degraded lipid components. A thorough methodology development for analysing cooked and degraded food remains from ceramic vessels was carried out, and the most efficient sample preparation protocol is described. The identified components, also controlled by independent parallel analysis by gas chromatography‐mass spectrometry (GC‐MS) and gas chromatography‐combustion‐isotope ratio mass spectrometry (GC‐C‐IRMS), demonstrate its capability of identifying very different food residues including dairy, adipose fats as well as lipids of aquatic origin. The results obtained from experimentally cooked and original archaeological samples prove the suitability of MALDI‐FT‐ICR‐MS for analysing archaeological organic residues. Sample preparation protocol and identification of compounds provide future reference for analysing various aged and degraded lipid residues in different organic and mineral matrices.  相似文献   

13.
Higher homologues of widely reported C86 isoprenoid diglycerol tetraether lipid cores, containing 0–6 cyclopentyl rings, have been identified in (hyper)thermophilic archaea, representing up to 21% of total tetraether lipids in the cells. Liquid chromatography‐tandem mass spectrometry confirms that the additional carbon atoms in the C87‐88 homologues are located in the etherified chains. Structures identified include dialkyl and monoalkyl (‘H‐shaped’) tetraethers containing C40‐42 or C81‐82 hydrocarbons, respectively, many representing novel compounds. Gas chromatography‐mass spectrometric analysis of hydrocarbons released from the lipid cores by ether cleavage suggests that the C40 chains are biphytanes and the C41 chains 13‐methylbiphytanes. Multiple isomers, having different chain combinations, were recognised among the dialkyl lipids. Methylated tetraethers are produced by Methanothermobacter thermautotrophicus in varying proportions depending on growth conditions, suggesting that methylation may be an adaptive mechanism to regulate cellular function. The detection of methylated lipids in Pyrobaculum sp. AQ1.S2 and Sulfolobus acidocaldarius represents the first reported occurrences in Crenarchaeota. Soils and aquatic sediments from geographically distinct mesotemperate environments that were screened for homologues contained monomethylated tetraethers, with di‐ and trimethylated structures being detected occasionally. The structural diversity and range of occurrences of the C87‐89 tetraethers highlight their potential as complementary biomarkers for archaea in natural environments. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
李琳  张阳阳  赵镇文 《中国科学:化学》2014,(5):84-86,735,738
近年来,鉴于脂质在疾病发生发展过程中的重要作用,功能脂质组研究受到广泛关注.质谱技术是功能脂质组分析的主要手段,本文将介绍用于功能脂质组分析的质谱技术,概述国内功能脂质组质谱分析的研究进展,并提出问题和展望,以期可以在现有方法上进行改进提高,用以发现更多的功能脂质,进而用于发展疾病生物标志物及治疗靶标以及研究疾病机理等,并期待推进功能脂质组学研究的发展.  相似文献   

15.
Oxidative stress plays an important role in the development of various disease processes and is a putative mechanism in the development of bronchopulmonary dysplasia, the most common complication of extreme preterm birth. Glutathione, a major endogenous antioxidant and redox buffer, also mediates cellular functions through protein thiolation. We sought to determine if post‐translational thiol modification of hemoglobin F occurs in neonates by examining erythrocyte samples obtained during the first month of life from premature infants, born at 23 0/7 – 28 6/7 weeks gestational age, who were enrolled at our center in the Prematurity and Respiratory Outcomes Program (PROP). Using liquid chromatography‐mass spectrometry (LC‐MS), we report the novel finding of in vivo and in vitro glutathionylation of γG and γA subunits of Hgb F. Through tandem mass spectrometry (nanoLC‐MS/MS), we confirmed the adduction site as the Cys‐γ94 residue and through high‐resolution mass spectrometry determined that the modification occurs in both γ subunits. We also identified glutathionylation of the β subunit of Hgb A in our patient samples; we did not find modified α subunits of Hgb A or F. In conclusion, we are the first to report that glutathionylation of γG and γA of Hgb F occurs in premature infants. Additional studies of this post‐translational modification are needed to determine its physiologic impact on Hgb F function and if sG‐Hgb is a biomarker for clinical morbidities associated with oxidative stress in premature infants. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
Lipidated cyclopropenes serve as useful bioorthogonal reagents for imaging cell membranes due to the cyclopropene’s small size and ability to ligate with pro-fluorescent tetrazines. Previously, the lipidation of cyclopropenes required modification at the C3 position because methods to append lipids at C1/C2 were not available. Herein, we describe C1/C2 lipidation with the biologically active lipid ceramide and a common phospholipid using a cyclopropene scaffold whose reactivity with 1,2,4,5-tetrazines has been caged.  相似文献   

17.
磷脂是所有生物细胞膜的主要成分,在许多生命活动过程中具有重要的功能。但由于生物样本中的磷脂种类繁多,含量极低,存在基质抑制效应,且结构中缺少易电离的官能团,从而导致对磷脂的定性和定量分析较困难。利用化学衍生化技术对其进行结构修饰可以提高离子化效率、改善色谱分离度且提高质谱(MS)检测的灵敏度和选择性。MS与衍生化方法结合已被广泛用于蛋白组学、糖组学、代谢物等的分析。近年来,这一策略逐渐被应用于脂质组学的分析研究。该文综述了国内外近10年基于衍生化技术的甘油磷脂分析方法及其应用研究进展,以激发衍生化技术在脂质组学分析中的应用潜能。  相似文献   

18.
《Analytical letters》2012,45(10):1172-1183
The snow alga Chlamydomonas nivalis is a model species of microalgae for the investigation of cell response mechanism and adaptation ability in natural habitats in polar regions and similar extreme environments. The alteration of fatty acids in cellular lipids is known to play a vital role for cell survival and reproduction under various stress conditions. In the present work, an integrated approach of gas chromatography/mass spectrometry (GC/MS) coupled with multivariate statistical analysis was developed to investigate the fatty acid profiles and identify the biomarkers in response to NaCl stress. The data of fatty acid profiles between the control and NaCl-stress group was classified by orthogonal projection on latent structure discriminant analysis (OPLS-DA) and hierarchical cluster analysis (HCA); six of fatty acids (C16:0, C16:3, C18:0, C18:1, C18:2, and C18:3) were identified as biomarkers. These biomarkers showed a regulatory role by decreasing the degree of lipid unsaturation (DLU), providing an expected function in reducing membrane fluidity and permeability for enhancing the tolerance to higher salinity. This is the first report to demonstrate the fatty acid biomarkers in microalgae as the physiological regulators corresponding to the response and adaptation to NaCl stress based on an integrated approach at the lipidomic level.  相似文献   

19.
In this work, we performed investigations on the lipid content of higher plants (spinach) under hyperosmotic stress, by means of thin layer chromatography (TLC) and mass spectrometry. In particular, the experiments have been performed at different plant organization levels: whole leaves, freshly prepared protoplast suspension and mesophyll cells obtained by reformation of the cell wall from protoplast suspension. The results obtained showed that hyperosmotic stress induces changes in the phospholipid content depending on the different plant organization levels studied. All phospholipids showed an increment of their content in stressed whole leaves. In particular, phosphatidylglycerol (PG) redoubles its content by 1 h of osmotic shock. Different responses to hyperosmotic stress were reported for the other systems. In the case of protoplasts, an increment of PG, phosphatidylcholine (PC) and phosphatidylinositol (PI) together with biphosphatidylglycerol (BPG) and phosphatidylethanolamine (PE) content decreasing were observed in stressed sample. For PG, identified as PG (34:4) by elecrospray ionization mass spectrometry, the increment was of about 30%. In the case of cells, conversely, a decrease of PG content under osmotic stress was recorded. The results suggest an important role of phospholipids, in particular of PG, in the osmotic stress response.  相似文献   

20.
The ceramides are a family of bioactive lipid‐derived messengers involved in the control of cellular senescence, inflammation, and apoptosis. Ceramide hydrolysis by acid ceramidase (AC) stops the biological activity of these substances and influences survival and function of normal and neoplastic cells. Because of its central role in the ceramide metabolism, AC may offer a novel molecular target in disorders with dysfunctional ceramide‐mediated signaling. Here, a class of benzoxazolone carboxamides is identified as the first potent and systemically active inhibitors of AC. Prototype members of this class inhibit AC with low nanomolar potency by covalent binding to the catalytic cysteine. Their metabolic stability and high in vivo efficacy suggest that these compounds may be used as probes to investigate the roles of ceramide in health and disease, and that this scaffold may represent a promising starting point for the development of novel therapeutic agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号