首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The ZnGa2O4:Mn2+, Cr3+ phosphors show three colors; the blue band of 380 nm from the charge transfer between Ga-O, the green band of 505 nm from Mn2+ and the red band of 705 nm from Cr3+. As a variation of Mn2+ or Cr3+ concentrations in ZnGa2O4:Mn2+, Cr3+, the relative emission intensity can be tuned. This phenomenon is explained in terms of the energy transfer based on four factors: the spectral overlap between the energy donors (Ga-O) and the energy accepters of Mn2+ or Cr3+, the absorption cross section of the energy accepters, the distance between them, and the decay time of the energy donors. ZnGa2O4:0.0025Mn2+, 0.010Cr3+ shows the CIE coordinates of x=0.4014, y=0.3368, which is a pure white light. The single-phased full-color emitting ZnGa2O4:Mn2+, Cr3+ phosphors can be applied to illumination devices.  相似文献   

2.
The exchange interactions and the magnetic exchange energies are calculated by using the mean field theory and the probability law of Zn1−xMnxCr2O4 nanoparticles. The high-temperature series expansions have been applied in the spinels Zn1−xMnxCr2O4 systems, combined with the Padé approximants method, to determine the magnetic phase diagram, i.e. TC versus dilution x. The critical exponent associated with the magnetic susceptibility (γ) is deduced. The obtained value of γ is insensitive to the dilution ratio x and may be compared with other theoretical results based on the 3D Heisenberg model.  相似文献   

3.
The magnetic nanoparticles of Mn1−xCuxFe2O4 (x=0, 0.2) were prepared by using a sol-gel method. It is proved that both the MnFe2O4 and Mn0.8Cu0.2Fe2O4 nanoparticle samples have superparamagnetic feature. Although the particle sizes are the same, substitution of a small fraction Cu for Mn results in the increase of magnetocrystallite anisotropy energy, thus enhances the blocking temperature from 130 K for MnFe2O4 to 260 K for Mn0.8Cu0.2Fe2O4. Mössbauer spectroscopy confirms that the anisotropy constant K of the Mn0.8Cu0.2Fe2O4 material is distinctly higher than that of the MnFe2O4 compound. Increase of the blocking temperature suggests that the approach we employed is effective to tackle the ‘superparamagnetic limit’ problem.  相似文献   

4.
Annealing experiments on MnxCr3?xO4 system were carried out in order to determine the miscibility gap boundaries. The coexisting phases were determined by X-ray analysis. An influence of the oxygen non-stiochiometry was investigated and the boundaries of three phase regions (Cr2O3-cubic spinel-bixbyite and cubic spinel-tetragonal spinel-bixbyite) at 1235 K were found.The experimentally determined miscibility gap is compared with that calculated on the basis of the simple thermodynamic model using ΔHtrans and ΔStrans dependences on compositions recently published.  相似文献   

5.
Ternary spinel compounds have been found in the system Mn1?xCuxCr2S4 for x < 0.4 and x ? 0.8. The unit cell parameter does not follow a Vegard law. Magnetization measurements up to 150 kOe for Mn0.95Cu0.05Cr2S4 show three magnetic structures: Néel ferrimagnet, Yafet-Kittel and tridimensional. The magnetic phase diagram has been calculated within the molecular field approximation. There is strong evidence for the non-existence of Mn3+. Our findings are in conformity with a model proposed by Goodenough.  相似文献   

6.
Migration of small polarons in λ-MnO2, Li0.5Mn2O4 and LiMn2O4 is studied via first principles calculations. Migration energy barriers of single small polaron migrations in λ-MnO2, Li0.5Mn2O4 and LiMn2O4 are 0.22 eV, 0.45 eV and 0.35 eV, respectively. The energy level changes of Mn-3d states along the polaron migration path are analyzed in detail. Results indicate that the activation energy barrier of polaron migration is strongly associated with the energy level shift of Mn-3dz2 orbital, which is dependent on the short range structural arrangement of Mn3+/Mn4+ in the crystal. The electrical conduction properties of LixMn2O4 at room temperature are then discussed.  相似文献   

7.
Combining two methods, coating and doping, to modify spinel LiMn2O4, is a novel approach we used to synthesize active material. First we coated the LiMn2O4 particles with the nickel oxide particles by means of homogenous precipitation, and then the nickel oxide-coated LiMn2O4 was calcined at 750 °C to form a LiNixMn2−xO4 shell on the surface of spinel LiMn2O4 particles. Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), cyclic voltammetry (CV) and charge-discharge test were performed to characterize the spinel LiMn2O4 before and after modification. The experimental results indicated that a spinel LiMn2O4 core is surrounded by a LiNixMn2−xO4 shell. The resulting composite showed excellent electrochemical cycling performance with an average fading rate of 0.014% per cycle. This improved cycle stability is greatly attributed to the suppression of Jahn-Teller distortion on the surface of spinel LiMn2O4 particles during cycling.  相似文献   

8.
The exchange interactions (JBB and JAB are the intra and the inter-sublattice exchange interactions between neighbouring spins, respectively) are obtained by using the general expressions of canting angle and critical temperature obtained by mean field theory of Li0.5Fe2.5−2xAlxCrxO4. The expression of magnetic energy of Li0.5Fe2.5−2xAlxCrxO4 is obtained for different spin configurations and dilution x. The saturation magnetisation of Li0.5Fe2.5-2xAlxCrxO4 is obtained with different values of dilution x. The magnetic phase diagram of Li0.5Fe2.5-2xAlxCrxO4 materials is obtained by high temperature series expansions (HTSEs). The critical exponent associated with the magnetic susceptibility of Li0.5Fe2.5−2xAlxCrxO4 is deduced.  相似文献   

9.
The Mn-, Cr-doped and Mn, Cr-co-doped MgAl2O4 powders have been synthesized via a gel-solid reaction method. Energy transfer from Mn2+ to Cr3+ has been observed for the first time in the co-doped MgAl2O4 phosphors. When excited with blue light with a wavelength of 450 nm at room temperature, both green emission from Mn2+ around 520 nm and red emission from Cr3+ around 675and 693 nm were generated. Moreover, the color of the emission can be modified by controlling the doping concentrations of Mn2+ and Cr3+. Therefore, MgAl2O4: Mn2+, Cr3+ could be used as a single-phased phosphor for white LED with a blue LED chip. The energy transfer in terms of Mn2+ to Cr3+ is determined by means of radiation and reabsorption.  相似文献   

10.
Ca4Mn3−xCrxO10 compounds were synthesized in order to investigate the role of an isoelectronic substitution in the layered manganite. Induced structural changes are mainly described as a distortion of the two types of octahedra in the n=3 RP structure. The results indicate that Cr3+ is not the only significant valence state for chromium ions. Electrical and magnetic characterization allow to conclude that chromium does not favour the double exchange mechanism in these compounds.  相似文献   

11.
Li0.5Fe2.5−xMnxO4 (0≦x≦1.0) powders with small and uniformly sized particles were successfully synthesized by microwave-induced combustion, using lithium nitrate, ferric nitrate, manganese nitrate and carbohydrazide as the starting materials. The process takes only a few minutes to obtain as-received Mn-substituted lithium ferrite powders. The resultant powders annealed at 650 °C for 2 h and were investigated by thermogravimeter/differential thermal analyzer (TG/DTA), X-ray diffractometer (XRD), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM), and thermomagnetic analysis (TMA). The results revealed that the Mn content were strongly influenced the magnetic properties and Curie temperature of Mn-substituted lithium ferrite powder. As for sintered Li0.5Fe2.5−xMnxO4 specimens, substituting an appropriate amount of Mn for Fe in the Li0.5Fe2.5−xMnxO4 specimens markedly improved the complex permeability and loss tangent.  相似文献   

12.
The magnetic property of double doped manganite Nd0.5(1+x)Ca0.5(1−x)Mn(1−x)CrxO3 with a fixed ratio of Mn3+:Mn4+=1:1 has been investigated. For the undoped sample, it undergoes one transition from charge disordering to charge ordering (CO) associated with paramagnetic (PM)-antiferromagnetic (AFM) phase transition at T<250 K. The long range AFM ordering seems to form at 35 K, rather than previously reported 150 K. At low temperature, an asymmetrical M-H hysteresis loop occurs due to weak AFM coupling. For the doped samples, the substitution of Cr3+ for Mn3+ ions causes the increase of magnetization and the rise of Tc. As the Cr3+ concentration increases, the CO domain gradually becomes smaller and the CO melting process emerges. At low temperature, the FM superexchange interaction between Mn3+ and Cr3+ ions causes a magnetic upturn, namely, the second FM phase transition.  相似文献   

13.
Magnetic data for Rb2Cr1?xCdxCl4 and Rb2Cr1?xMnxCl4 are reported. Curie temperatures can be determined quite accurately in these systems with the help of magnetometers if small fields are applied. The magnetic moment per mol Cr(II) is independent of x for small concentrations of cadmium. A roughly linear decrease of that moment is observed in the case of an admixture of manganese. This gives evidence for an antiferromagnetic interaction between Cr(2+) and Mn(2+) in the mixed crystal system Rb2Cr1?xMnxCl4.  相似文献   

14.
The microstructure and magnetic properties have been investigated systematically for Sn1−xMnxO2 polycrystalline powder samples with x=0.02-0.08 synthesized by a solid-state reaction method. X-ray diffraction revealed that all samples are pure rutile-type tetragonal phase and the cell parameters a and c decrease monotonously with the increase in Mn content, which indicated that Mn ions substitute into the lattice of SnO2. Magnetic measurements revealed that all samples exhibit room temperature ferromagnetism. Furthermore, magnetic investigations demonstrate that magnetic properties strongly depend on doping content, x. The average magnetic moment per Mn atom decreases with increase in the Mn content, because antiferromagnetic super-exchange interaction takes place within the neighbor Mn3+ ions through O2− ions for the samples with higher Mn doping. Our results indicate that the ferromagnetic property is intrinsic to the SnO2 system and is not a result of any secondary magnetic phase or cluster formation.  相似文献   

15.
A series of polycrystalline ferrites having nominal chemical composition Co0.50−xMnxZn0.5Fe2O4 (0<x<0.4) have been synthesized by the solid-state reaction technique. The XRD analysis confirms single phase cubic spinel structure for all compositions. Lattice constant increases from 0.84195 to 0.84429 nm with the increasing Mn content and obeys Vegard's law. The average grain size increases by increasing both Mn content and sintering temperatures. Room temperature saturation magnetization increases for x=0.1 and decreases for increasing Mn content. The coercivity decreases with increasing Mn content due to the decrease of anisotropy constant. A reentrant spin glass behavior of these samples is observed from the zero field cooled magnetization measurements. The real part of the initial permeability increases by increasing both Mn content and sintering temperatures. This is due to the homogeneous grain growth and densification of the ferrites. The highest initial permeability 137 is observed for x=0.4 sintered at 1573 K on the other hand, the highest relative quality factor (2522) is obtained for the sample Co0.2Mn0.3Zn0.5Fe2O4 sintered at 1523 K. The Mn substituted Co0.50−xMnxZn0.5Fe2O4 ferrites showed improved magnetic properties.  相似文献   

16.
Effects of Mn substitution for Co and Fe on the structural and magnetic properties of inverse-spinel CoFe2O4 have been investigated. MnxCo1−xFe2O4 and MnyCoFe2−yO4 thin films were prepared by a sol–gel method. The observed increase of the lattice constant of MnxCo1−xFe2O4 indicates that Mn2+ ions substitute the octahedral Co2+ sites. Conversion electron Mössbauer spectroscopy data indicate that a fraction of octahedral Co2+ ions exchange sites with tetrahedral Fe3+ ions through Mn doping. Vibrating-sample magnetometry data exhibit a large increase of saturation magnetization for both MnxCo1−xFe2O4 and MnyCoFe2−yO4 films compared to that of the CoFe2O4 film. Such enhancement of magnetization can be explained in terms of a breaking of ferrimagnetic order induced by the Co2+ migration.  相似文献   

17.
Solid solutions of manganese(II)-doped magnesium pyroborate, ((Mg1−xMnx)2B2O5, 0<x≤0.30, triclinic system, space group: P1¯ (no. 2)), were synthesized by solid state reaction. The unit cell parameters were refined by the Rietveld method of powder X-ray diffraction patterns. (Mg1−xMnx)2B2O5 showed broad red emission at 670 nm under 414 nm excitation. The wavelengths of the emission peak did not depend on the manganese content. Absorption of the d-d transitions of Mn2+ ions was observed in the photoluminescence excitation spectra. The emission intensity reached the maximum at a Mn content (x) of 0.05 and decreased with increasing x from 0.05 to 0.30.  相似文献   

18.
In this paper, the structural, thermal and magnetic properties of Ni1−xMnxFe2O4 are presented. It is observed that high concentration of Mn2+ ions into NiFe2O4 tends to reduce the particle size. Calcination at 500 °C has resulted in the growth of Ni1−xMnxFe2O4 nanoparticles, but the calcination at 900 °C has led to the evaporation of the majorities of the polyvinyl alcohol. After calcination at 900 °C, crystallographically oriented NiMnFe2O4 nanoparticles are formed. These Ni1−xMnxFe2O4 nanoparticles show hysteresis behaviour upon magnetization. On the other hand, saturation magnetization (Ms) values decreases with increasing Mn content in ferrite due to the influence of Mn2+ ion in the sub lattice.  相似文献   

19.
A series of phosphors with the composition Y3MnxAl5−2xSixO12 (x=0, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.6) was prepared through solid state reactions. X-ray powder diffraction analysis of samples shows that when co-doping content does not exceed 16% of Al3+, equimolar co-doping of Mn2+ and Si4+ does not change the garnet structure of phosphors, but makes the interplanar distance to decrease a certain extent. However, if the co-doping content exceeds 16%, new phases will form in the samples. The excitation and emission spectra of samples show that Mn2+ in Y3MnxAl5−2xSixO12 emits broadband orange light (peak wavelength varies from 586 to 593 nm). With an increment in co-doping content, the emission intensity of the phosphors increases when the value of x is lower than 0.1 while it decreases when it is higher than 0.1 and the emission peak moves to a longer wavelength.  相似文献   

20.
The substituted nickel ferrite (NiFe2−2xSnxCuxO4, x=0, 0.1, 0.2, 0.3) was prepared by the conventional ceramic method. The effect of substitution of Fe3+ ions by Sn4+ and Cu2+ cations on the structural and magnetic properties of the ferrite was studied by means of 57Fe Mössbauer spectroscopy, alternating gradient force magnetometry (AGFM) and Faraday balance. Whereas undoped NiFe2O4 adopts a fully inverse spinel structure of the type (Fe)[NiFe]O4, Sn4+ and Cu2+ cations tend to occupy octahedral positions in the structure of the substituted ferrite. Based on the results of Mössbauer spectroscopic measurements, the crystal-chemical formula of the substituted ferrite may be written as (Fe)[NiFe1−2xSnxCux]O4, where parentheses and square brackets enclose cations in tetrahedral (A) and octahedral [B] coordination, respectively. The Néel temperature and the saturation magnetization values of the NiFe2−2xSnxCuxO4 samples were found to decrease with increasing degree of substitution (x). The variation of the saturation magnetization with x measured using the AGFM method and that calculated on the basis of the Mössbauer spectroscopic measurements are in qualitative agreement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号