首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nickel catalysts supported on γ-Al2O3 were synthesized in the presence of polyvinylpyrrolidone (PVP) using both alkaline polyol method and hydrazine reduction method while fixing the weight ratio of [(PVP)]/[Ni(CH3COO)2·4H2O] at 2. The effects of hydrazine [N2H5OH]/[Ni] and [NaOH]/[Ni] molar ratios on the structural properties of the catalysts were characterized by transmission electron microscopy (HRTEM) and by X-ray diffraction (XRD). The average of monodispersed Ni nanoparticles ranged between 8.0 and 13.0 nm. The catalytic tests were performed for the partial oxidation of methane in the temperature range of 600–800 °C under a flow rate of 157,500 L kg–1 hr–1 with CH4/O2= 2. At the molar ratio of [NaOH]/[Ni] = 2, the resultant nickel nanoparticles on alumina was established completely without impurities; thus, it demonstrated the highest catalytic activity, 88% for CH4 conversion, and H2 selectivity, 90.60%. The optimum [N2H5OH]/[Ni] ratio was determined as 4.1, which means a good catalytic performance and 89.35% selectivity to H2 for the partial oxidation of methane.  相似文献   

2.
The solid-state behaviour of two series of isomeric, phenol-substituted, aminomethylphosphines, as the free ligands and bound to PtII, have been extensively studied using single crystal X-ray crystallography. In the first library, isomeric diphosphines of the type Ph2PCH2N(Ar)CH2PPh2 [1a–e; Ar = C6H3(Me)(OH)] and, in the second library, amide-functionalised, isomeric ligands Ph2PCH2N{CH2C(O)NH(Ar)}CH2PPh2 [2a–e; Ar = C6H3(Me)(OH)], were synthesised by reaction of Ph2PCH2OH and the appropriate amine in CH3OH, and isolated as colourless solids or oils in good yield. The non-methyl, substituted diphosphines Ph2PCH2N{CH2C(O)NH(Ar)}CH2PPh2 [2f, Ar = 3-C6H4(OH); 2g, Ar = 4-C6H4(OH)] and Ph2PCH2N(Ar)CH2PPh2 [3, Ar = 3-C6H4(OH)] were also prepared for comparative purposes. Reactions of 1a–e, 2a–g, or 3 with PtCl24-cod) afforded the corresponding square-planar complexes 4a–e, 5a–g, and 6 in good to high isolated yields. All new compounds were characterised using a range of spectroscopic (1H, 31P{1H}, FT–IR) and analytical techniques. Single crystal X-ray structures have been determined for 1a, 1b∙CH3OH, 2f∙CH3OH, 2g, 3, 4b∙(CH3)2SO, 4c∙CHCl3, 4d∙½Et2O, 4e∙½CHCl3∙½CH3OH, 5a∙½Et2O, 5b, 5c∙¼H2O, 5d∙Et2O, and 6∙(CH3)2SO. The free phenolic group in 1b∙CH3OH, 2f∙CH3OH, 2g, 4b∙(CH3)2SO, 5a∙½Et2O, 5c∙¼H2O, and 6∙(CH3)2SO exhibits various intra- or intermolecular O–H∙∙∙X (X = O, N, P, Cl) hydrogen contacts leading to different packing arrangements.  相似文献   

3.
Four novel molecular square grids were achieved by self-assembly using the flexible ligands bis(di-2-pyridyl ketone) thiocarbohydrazone (H2L1), bis(quinoline-2-carbaldehyde) thiocarbohydrazone (H2L2), bis(di-2-pyridyl ketone) carbohydrazone (H2L3) and bis(2-benzoylpyridine) carbohydrazone (H2L4). Three complexes were given a general formula of [Ni(HL)]4[PF6]4 · nH2O and one [Ni2(HL2)L2]2(PF6)2 · 7H2O. The MALDI-MS spectra reveal the formation of tetranuclear molecular squares. The square grid of the Ni(II) centers in all the complexes were organized by deprotonated ligands. The complex [Ni(HL1)]4[PF6]4 · 11H2O crystallized as [Ni(HL1)]4(PF6)4 · 0.5 CH3CH2OH · 2.8H2O and X-ray study revealed octahedral geometries around the Ni(II) centers. Variable temperature magnetic studies suggest intramolecular antiferromagnetic coupling between the Ni(II) electrons by a super exchange mechanism through intervening sulfur/oxygen atoms.  相似文献   

4.
The crystal structure of [Zn(en)2- (NC)2Ni(CN)2 Zn(en)][Ni(CN)4]· 3 H2O consists of infinite positively charged wave-shaped layers of composition [Zn(en)2-(NC)2Ni(CN)2- Zn(en)] n 2n+ with the [Ni(CN)4]2– anions and water molecules included between them. Both Ni atoms exhibit square-planar coordination. The chelate bonded en (=ethylenediamine) and N-bonded cyano ligands around two independent zinc atoms form a deformed tetrahedron and a deformed octahedron, respectively. Yellow needles of the complex belong to the orthorhombic space groupPbcm witha = 6.977(1),b = 25.407(4),c = 14.876(2)Å,Z = 4,D m = 1.74(1) g cm–3 andD c = 1.739 g cm–3. The structure was refined toR = 6.31 %.  相似文献   

5.
6.
Abstract

[Ni(L?1)(HL)(H2O)2].ClO4 with a Schiff base ligand L (HL = 3-p-tolylimino-2-butanone oxime) was prepared and structurally characterized by IR, cyclic voltammetry and X-ray diffraction methods. The nickel atom has distorted octahedral coordination consisting of four nitrogen atoms and two oxygen atoms. The equatorial plane is formed by two oxime nitrogen atoms and two imine nitrogen atoms of two Schiff base ligand (L?1 and HL) with Ni‐ N bond distances between 2.01(1) and 2.11(1)Å. Water oxygen atoms occupy axial positions with Ni‐ O bond distances of 2.06(1) and 2.15(1) Å. The oxime groups in the Schiff base ligands are coordinated to Ni atom through their nitrogen atoms. One asymmetric intramolecular hydrogen bridge between the two oxime groups is found in the title complex.  相似文献   

7.
Summary The template reaction of isonitrosoacetylacetone (Hina) witho-phenylenediamine (o-phenen) in the presence of (MeCO2)2Ni·4H2O in EtOH yielded three types of nickel(II) complexes (depending on the molar ratio of the reactants) formulated as L1Ni(O2CMe)·2H2O (1), (L1)2Ni (2), and L2Ni·H2O (3). HL1 and H2L2 are the half unit and symmetric Schiff base ligands obtained from the (11) and (21) condensation of (Hina) with (o-phenen) respectively. The (11) molar ratio reaction of (1) with either acetylacetone (Hacac) or (Hina) in CHCl3 led to the formation of mixed ligand complexes L1Ni(acac)·H2O (4) and L1Ni(ina)·H2O (5) whereas a similar reaction with salicylaldehyde (Hsal) produced L3Ni (6); H2L3 is the unsymmetric Schiff base formed by the (11) condensation of the amino group in (1) with (Hsal). Analytical, spectral and magnetic moment evidence are compatible with the suggested structures of the metal complexes.This paper is a summary of the M.Sc. thesis of S. M. Imam.  相似文献   

8.
Reaction of tris-(2-aminoethyl)amine (tren) andthe sodium salt of an -ketocarboxylic acid, typically sodium pyruvate, affordsin the presence of a lanthanide ion aseries of complexes and aggregates includingmononuclear, cyclic tetranuclear and polymerspecies of [L1]3- ([L1]3-=N[CH2CH2N=C(CH3)COO-]3).The aggregation of these and related d-block elementcomplexes with Na+ ions leadsto the formation of polymeric materials, and thefactors influencing the formation and controlof these various aggregation states are discussed.Metal cations also template the aggregationof the fragment [Ni(L2)] ([L2]2- =CH2[CH2N = C(CH3)COO-]2)to give, in high yield, the polynuclearaggregates {[Ni(L2)]6M}x+(M = Nd, Pr, Ce, La, x = 3; M = Sr, Ba, x = 2). The structures of{[Ni(L2)]6M}x+ show aninterstitial twelve co-ordinate, icosahedralcation Mx+ encapsulated by six [Ni(L2)]fragments. In the presence ofNa+, aggregation of [Ni(L2)] fragments affords {[Ni(L2)]9Na4(H2O)(MeOH)(ClO4)}3+ thestructure of whichshows four Na+ ions templating the formation ofa distorted tricapped trigonal prismatic[Ni(L2)]9 cage. Thus, control overconstruction of various polynuclear cages viaself-assembly at octahedral junctions can beachieved using main group, transition metaland lanthanide ion templates.  相似文献   

9.
The formation of complexes and disproportionation of nitrogen oxides (NO, N2O) on cationic forms of LTA, FAU, and MOR zeolites was investigated by diffuse-reflectance IR spectroscopy. N2O is adsorbed on the samples under study in the molecular form and the frequencies of the first overtone of the stretching vibrations ν10–2 and the combination bands of the stretching vibrations with other vibrational modes for N2O complexes with cationic sites in zeolites (ν30–1 + ν10–1, ν10–1 + δ0–2) are more significantly influenced by the nature of the zeolite. The presence of several IR bands in the region of 2400–2600 cm−1 (the ν10–1 + δ0–2 transitions) for different zeolite types was explained by the availability of different localization sites for cations in these zeolites. The frequencies in this region also depend on the nature of the cation (its charge and radius). The data can be explained by the specific geometry of the N2O complex formed, presumably two-point adsorption of N2O on a cation and a neighboring oxygen atom of the framework. Adsorption of CO or CH4 on the samples with preliminarily adsorbed N2O at 20–180 °C does not result in any oxidation of these molecules. NO+ and N2O3 species formed by disproportionation of NO are capable of oxidizing CO and CH4 molecules to CO2, whereas NOx is reduced simultaneously to N2 or N2O. The peculiarities in the behavior of cationic forms of different zeolites with respect to adsorbed nitrogen oxides determined by different density and localization of cations have been established.  相似文献   

10.
Asymmetric 7-formyanil-substituted-imino-4-(4-methyl-2-butanone)-8-hydroxyquinoline-5-sulphonic acid (Schiff bases), react with CoII, NiII and CuII ions to give 1:2, 1:1 and 2:1 complexes as established by conductometric titrations in 1:1 DMF:H2O. The complexes were investigated by elemental analyses, molecular weight determinations, molar conductance, magnetic moments, thermal analysis, i.r., u.v.–vis. and e.s.r. spectra. The complexes have an octahedral crystal structure and general formula [ML·(OH2)2], where MII = Co, Ni and Cu, and L = Na[7—X—HL], (—X— = (CH2)2, (CH2)3, p-C6H4, o-C6H4). Antimicrobial activity of these new ligands and their transition metal complexes has been screened in vitro on common fungi and bacteria.  相似文献   

11.
A new tetradentate N2O2 donor Schiff base ligand [OHC6H4CHNCH2CH2CH(CH2CH3)NCHC6H4OH = H2L ] was obtained by 1:2 condensation of 1,3-diaminopentane with salicylaldehyde and has been used to synthesise an unusual copper(II) complex whose asymmetric unit presents two structurally different almost linear trinuclear units [Cu3(μ-L)2(ClO4)2] [Cu3(μ-L)2(H2O)(ClO4)2] (1). The ligand and the complex were characterised by elemental analysis, FT-IR, 1H NMR and UV–Vis spectroscopy in addition electrochemical and single crystal X-ray diffraction studies were performed for the complex. The magnetic properties of 1 reveal the presence of strong intra-trimer (J1 = −202(3) cm−1 and J2 = −233(3) cm−1) as well as very weak inter-trimer (zJ′ = −0.11(1) cm−1) antiferromagnetic interactions.  相似文献   

12.
Reactions of N-(2-hydroxy-3,5-R1,R2-benzyl)-4-aminoantipyrines with copper acetate in ethanol gave complexes with Schiff bases (SBs) rather than the expected complexes with reduced SBs; i.e., the starting ligands undergo oxidative dehydrogenation during the complexation reaction. The corresponding complexes with reduced SBs were obtained from sodium salts of the ligands and cupric sulfate in aqueous solutions. Kinetic measurements showed that oxidative dehydrogenation occurs in the heteroleptic complexes Cu(L i )(CH3COO)(X) (L i H are derivatives of N-(2-hydroxy-3,5-R1,R2-benzyl)-4-aminoantipyrines; i = 6–10; X = H2O, CH3OH, CH3CH2OH) but does not occur in the complexes CH3OH, CH3CH2OH. The absence of oxidative dehydrogenation of the ligands in Cu(L i )2 · H2O can be explained by the octahedral environment of the Cu2+ ion and, accordingly, the absence of the coordination site for molecular oxygen. The molecular structures of two Cu(II) complexes with SBs were determined by X-ray diffraction.  相似文献   

13.
The syntheses of (DIM)Ni(NO3)2 and (DIM)Ni(NO2)2, where DIM is a 1,4-diazadiene bidentate donor, are reported to enable testing of bis boryl reduced N-heterocycles for their ability to carry out stepwise deoxygenation of coordinated nitrate and nitrite, forming O(Bpin)2. Single deoxygenation of (DIM)Ni(NO2)2 yields the tetrahedral complex (DIM)Ni(NO)(ONO), with a linear nitrosyl and κ1-ONO. Further deoxygenation of (DIM)Ni(NO)(ONO) results in the formation of dimeric [(DIM)Ni(NO)]2, where the dimer is linked through a Ni–Ni bond. The lost reduced nitrogen byproduct is shown to be N2O, indicating N–N bond formation in the course of the reaction. Isotopic labelling studies establish that the N–N bond of N2O is formed in a bimetallic Ni2 intermediate and that the two nitrogen atoms of (DIM)Ni(NO)(ONO) become symmetry equivalent prior to N–N bond formation. The [(DIM)Ni(NO)]2 dimer is susceptible to oxidation by AgX (X = NO3, NO2, and OTf) as well as nitric oxide, the latter of which undergoes nitric oxide disproportionation to yield N2O and (DIM)Ni(NO)(ONO). We show that the first step in the deoxygenation of (DIM)Ni(NO)(ONO) to liberate N2O is outer sphere electron transfer, providing insight into the organic reductants employed for deoxygenation. Lastly, we show that at elevated temperatures, deoxygenation is accompanied by loss of DIM to form either pyrazine or bipyridine bridged polymers, with retention of a BpinO bridging ligand.

Deoxygenation of nitrogen oxyanions coordinated to nickel using reduced borylated heterocycles leads to N–N bond formation and N2O liberation. The nickel dimer product facilitates NO disproportionation, leading to a synthetic cycle.  相似文献   

14.
Two new complexes [{Zn(L1)(μ-OAc)Zn(CH3CHOHCH3)}2] and [Ni(L2)(H2O)(CH3OH)] with asymmetric Salamo-type ligands (H3L1 and H2L2) are synthesized and structurally characterized. In the Zn(II) and Ni(II) complexes, the terminal and central Zn(II) atoms are found to have slightly distorted square pyramidal and trigonal bipyramidal symmetries respectively, while the Ni(II) atom is hexa-coordinated and has a slightly distorted octahedral symmetry. Interestingly, a self-assembling continual zigzag 1D chain is formed by intermolecular hydrogen bonds in the Ni(II) complex. Furthermore, the Zn(II) and Ni(II) complexes in the ethanol solution show intense photoluminescence.  相似文献   

15.
Four new nickel(II), zinc(II), and cobalt(II) complexes, [Zn(L1)2]?·?H2O (1), [Ni(L1)2]?·?H2O (2), [Ni(L2)2] (3), and [Co(L3)2]?·?H2O (4), derived from hydroxy-rich Schiff bases 2-{[1-(5-chloro-2-hydroxyphenyl)methylidene]amino}-2-methylpropane-1,3-diol (HL1), 2-{[1-(2-hydroxy-3-methoxyphenyl)methylidene]amino}-2-ethylpropane-1,3-diol (HL2), and 2-{[1-(5-bromo-2-hydroxyphenyl)methylidene]amino}-2-methylpropane-1,3-diol (HL3) have been synthesized and characterized by elemental analyses, infrared spectroscopy, and single-crystal X-ray determination. Each metal in the complexes is six-coordinate in a distorted octahedral coordination. The Schiff bases coordinate to the metal atoms through the imino N, phenolate O, and one hydroxyl O. In the crystal structures of HL1 and the complexes, molecules are linked through intermolecular O–H···O hydrogen bonds, forming 1-D chains. The urease inhibitory activities of the compounds were evaluated and molecular docking study of the compounds with the Helicobacter pylori urease was performed.  相似文献   

16.
The self-assembly of 2,6-diformyl-4-methylphenol (DFMP) and 1-amino-2-propanol (AP)/2-amino-1,3-propanediol (APD) in the presence of copper(II) ions results in the formation of six new supramolecular architectures containing two versatile double Schiff base ligands (H3L and H5L1) with one-, two-, or three-dimensional structures involving diverse nuclearities: tetranuclear [Cu4(HL2−)2(N3)4]·4CH3OH·56H2O (1) and [Cu4(L3−)2(OH)2(H2O)2] (2), dinuclear [Cu2(H3L12−)(N3)(H2O)(NO3)] (3), polynuclear {[Cu2(H3L12−)(H2O)(BF4)(N3)]·H2O}n (4), heptanuclear [Cu7(H3L12−)2(O)2(C6H5CO2)6]·6CH3OH·44H2O (5), and decanuclear [Cu10(H3L12−)4(O)2(OH)2(C6H5CO2)4] (C6H5CO2)2·20H2O (6). X-ray studies have revealed that the basic building block in 1, 3, and 4 is comprised of two copper centers bridged through one μ-phenolate oxygen atom from HL2− or H3L12−, and one μ-1,1-azido (N3) ion and in 2, 5, and 6 by μ-phenoxide oxygen of L3− or H3L12− and μ-O2− or μ3-O2− ions. H-bonding involving coordinated/uncoordinated hydroxy groups of the ligands generates fascinating supramolecular architectures with 1D-single chains (1 and 6), 2D-sheets (3), and 3D-structures (4). In 5, benzoate ions display four different coordination modes, which, in our opinion, is unprecedented and constitutes a new discovery. In 1, 3, and 5, Cu(II) ions in [Cu2] units are antiferromagnetically coupled, with J ranging from −177 to −278 cm−1.  相似文献   

17.
The new compounds [Ni(L1)][Ni(L1)Sn2S6]n · 2H2O ( I ) and [Ni(L2)]2[Sn2S6] · 4H2O ( II ) containing the macrocyclic ligands L1 (L1 = 1,8-dimethyl-1,3,6,8,10,13-hexaazacyclotetradecane) and L2 (L2 = 1,8-diethyl-1,3,6,8,10,13-hexaazacyclotetradecane) were prepared at room temperature by overlaying an aqueous solution of Na4SnS4 · 14H2O with the [Ni(L1)](ClO4)2 complex dissolved in CH3CN ( I ) or by overlaying a solution of the [Ni(L2)](ClO4)2 complex dissolved in DMSO with an aqueous solution of Na4SnS4 · 14H2O ( II ). The slow interdiffusion of the two solvents guarantees supersaturation in the interface region of the solvents so that crystallization of the compounds occurs. In the structure of I one Ni2+ cation has bonds to S2– anions of the thiostannate anion thus generating chains along [100]. This cation is in an octahedral environment of four N atoms of L1 and two S atoms of the [Sn2S6]4– anion. The second [Ni(L1)]2+ complex exhibits a square-planar coordination geometry. These [Ni(L1)]2+ complexes and water molecules are located between the chains. In the structure of II isolated [Sn2S6]4– anions and [Ni(L2)]2+ cations are observed. The Ni2+ cations are fourfold coordinated by N atoms of the L2 ligand and feature also a square planar environment.  相似文献   

18.
The reaction of [OsX2(HL)(L)] (1) {X = Cl or Br; HL = PhC(O)C(=NOH)Ph (HL1) or PhC(O)C(=NOH)Me (HL2)] with n-BuONO yields mononuclear [OsX(NO)(L1)2] (2) or binuclear [OsX2(NO)(L2)]22 (3) nitrosyls depending on L. The complexes are also obtained by reacting (1) with NaNO2 plus HCl. Molecular weight determinations are in agreement with mono- and binuclear formulations. The diamagnetic orange-red nitrosyls exhibit (NO) at ca. 1890 cm–1 indicating NO+ character of the bound nitrogen monoxide. In 1H-n.m.r. a single sharp L2 methyl signal is in line with the centrosymmetric geometry (4) of the binuclear nitrosyls. The complexes display both spin-allowed and -forbidden charge transfer transitions in the 1000–200 nm range. Both (2) and (3) are electroactive and reductions characteristic of mono- and binuclear compositions are observable on the negative side of s.c.e. They react smoothly with acetylacetone (acacH) in the presence of K2CO3 yielding K[Os(acamo)(L1)2] (5) and K[Os(acac)(acamo)(L2)] (6) [acamo = deprotonated MeC(O)C(=NOH)C(O)Me] respectively.  相似文献   

19.
Three new potentially hexadentate N4O2 Schiff-base ligands (H2L1, H2L2 and H2L3) were prepared from the reaction of the polyamines N,N′-bis(2-aminophenyl)-1,2-ethanediamine (L1), N,N′-bis(2-aminophenyl)-1,3-propanediamine (L2) and N,N′-bis(2-aminophenyl)-1,4-butanediamine (L3), respectively with salicylaldehyde. Reaction of the Schiff bases with Ni(II) salts in the presence of N(Et)3 gave the neutral complexes [NiL4], [NiL5] and [NiL6]. Ni(II) complexes of the polyamines were also prepared. One of complexes [Ni(L1)(MeCN)2](ClO4)2·MeCN has been characterized through X-ray diffraction methods.  相似文献   

20.
The solvent-free conditions were employed to synthesise symmetrical Schiff base ligand from 2,6-diaminopyridine with cinnamaldehyde in (1 min) with a fair yield utilizing formic acid as a catalyst. Through coordination chemistry, new heteroleptic complexes of Cu(II), Co(II), Ni(II), Pt(II), Pd(II) and Zn(II) were achieved from Schiff base as a primary chelator (L1) and 2,2′‐bipyridine (2,2′-bipy) as a secondary chelator (L2). The prepared compounds have been characterized by elemental analysis, molar conductivity, magnetic susceptibility, FTIR, 1H NMR, UV–visible, mass spectrometry, and thermal gravimetric analysis, and screened in vitro for their potential as antibacterial activity by the agar well diffusion method. The metal complexes were formulated as [M (L1) (L2) (X)] YnH2O, L1 = Schiff base, L2 = 2,2′-bipy, (M = Cu(II), Co(II), Zn(II), Y = 2NO3, n = 1), (M = Ni(II), X = 2H2O, Y = 2NO3, n = 0) and (M = Pd(II) Pt(II), Y = 2Cl, n = 0). Both L1 and L2 act as a neutral bidentate ligand and coordinates via nitrogen atoms of imine and 2,2′-bipy to metal ions. The metal complexes were found to be electrolytic, with square-planar heteroleptic Cu(II), Co(II), Pt(II), and Pd(II) chelates and octahedral Ni(II) complex. As well as tetrahedral geometry, has been proposed for the complex of Zn(II). Furthermore, the biological activity study revealed that some metal chelates have excellent activity than Schiff base when tested against Gram-negative and Gram-positive strains of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). Finally, it was found that the Zn(II) and Pd(II) complexes were more effective against both types of bacteria tested than the imine and other metal complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号