首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Doubly base-stabilised cyano- and isothiocyanatoborylenes of the form LL′BY (L = CAAC = cyclic alkyl(amino)carbene; L′ = NHC = N-heterocyclic carbene; Y = CN, NCS) coordinate to group 6 carbonyl complexes via the terminal donor of the pseudohalide substituent and undergo facile and fully reversible one-electron oxidation to the corresponding boryl radical cations [LL′BY]˙+. Furthermore, calculations show that the borylenes have very similar proton affinities, both to each other and to NHC superbases. However, while the protonation of LL′B(CN) with PhSH yielding [LL′BH(CN)+][PhS] is fully reversible, that of LL′B(NCS) is rendered irreversible by a subsequent B-to-CCAAC hydrogen shift and nucleophilic attack of PhS at boron.

Borylenes of the form (CAAC)(NHC)BY (Y = CN, NCS; CAAC = cyclic alkyl(amino)carbene; NHC = N-heterocyclic carbene) coordinate to group 6 carbonyl complexes via Y, and show reversible boron-centered Brønsted basicity and one-electron oxidation.  相似文献   

2.
A simple and efficient synthetic route to the novel 3a,4-dihydro-3H,7H- and 4H,7H-pyrazolo[4′,3′:5,6]pyrano[4,3-c][1,2]oxazole ring systems from 3-(prop-2-en-1-yloxy)- or 3-(prop-2-yn-1-yloxy)-1H-pyrazole-4-carbaldehyde oximes has been developed by employing the intramolecular nitrile oxide cycloaddition (INOC) reaction as the key step. The configuration of intermediate aldoximes was unambiguously determined using NOESY experimental data and comparison of the magnitudes of 1JCH coupling constants of the iminyl moiety, which were greater by approximately 13 Hz for the predominant syn isomer. The structures of the obtained heterocyclic products were confirmed by detailed 1H, 13C and 15N NMR spectroscopic experiments and HRMS measurements.  相似文献   

3.
Post-modification of a series of NCN-pincer platinum(II) complexes [PtX(NCN-R-4)] (NCN = [C6H2(CH2NMe2)2-2,6], R = C(O)H, C(O)Me and C(O)Et), X = Cl or Br) at the para-position using the McMurry reaction was studied. The synthetic route towards two new [PtCl(NCN-R-4)] (R = C(O)Me and C(O)Et) complexes used above is likewise described. The utility and limitations of the McMurry reaction involving these pincer complexes was systematically evaluated. The predicted “homo-coupling” reaction of [PtBr(NCN-C(O)H-4)] led to the unexpected formation of 3,3′,5,5′-tetra[(dimethylamino)methyl]-4,4′-bis(platinum halide)-benzophenone (halide = Br or Cl), referred to hereafter as the bispincer-benzophenone complex 13. This material was further characterized using X-ray crystal structure determination. The applicability of the pincer complexes in the McMurry reaction is shown to open a route towards the synthesis of tamoxifen-type derivatives of which one phenyl ring of Tamoxifen® itself is replaced by an NCN arylplatinum pincer fragment. The newly synthesized derivatives can be used as potential candidates in anti-cancer drug screening protocols. Two NCN-arylpincer platinum tamoxifen type derivatives, 5 and 6, were successfully synthesized and of 5 the separation of the diastereomeric E-/Z-forms was achieved. Compound 6, which is the pivaloyl protected NCN pincer platinum hydroxy-Tamoxifen® derivative, was obtained as a mixture of E-/Z-isomers. The new derivatives were further analyzed and characterized with 1H-, 13C{1H}- and 195Pt{1H}-NMR, IR, exact mass MS and elemental analysis.  相似文献   

4.
4-13C-isoprene was prepared by the Wittig reaction. All reaction steps were optimised using unlabelled compounds. By reaction with triphenyl phosphine, 13C labelled methyl iodide afforded labelled methyl-triphenyl phosphine iodide in 84% yield. This reacted with meth acrolein with production of 4-13C-isoprene in 64% yield. Labelled polyisoprene was prepared by anionic polymerisation initiated by t-butyl lithium. Based on 13CH3I the overall yield is ca 30%. The polymer was characterized by 1H and 13C NMR spectroscopy. The contribution of each microstructure was [cis 1-4, 72%]; [trans 1-4, 10%]; [3-4, 18%].  相似文献   

5.
Thermodynamically favored simultaneous coordination of Pt(ii) corners with aza- and carboxylate ligands yields tricomponent coordination complexes with sophisticated structures and functions, which require careful structural characterization to paint accurate depiction of their structure–function relationships. Previous reports claimed that heteroleptic coordination of cis-(Et3P)2PtII with tetrapyridyl porphyrins (M′TPP, M′ = Zn or H2) and dicarboxylate ligands (XDC) yielded 3D tetragonal prisms containing two horizontal M′TPP faces and four vertical XDC pillars connected by eight Pt(ii) corners, even though such structures were not supported by their 1H NMR data. Through extensive X-ray crystallographic and NMR studies, herein, we demonstrate that self-assembly of cis-(Et3P)2PtII, M′TPP, and four different XDC linkers having varied lengths and rigidities actually yields bow-tie (⋈)-shaped 2D [{cis-(Et3P)2Pt}4(M′TPP) (XDC)2]4+ complexes featuring a M′TPP core and two parallel XDC linkers connected by four heteroleptic PtII corners instead of 3D prisms. This happened because (i) irrespective of their length (∼7–11 Å) and rigidity, the XDC linkers intramolecularly bridged two adjacent pyridyl-N atoms of a M′TPP core via PtII corners instead of connecting two cofacial M′TPP ligands and (ii) bow-tie complexes are entropically favored over prisms. The electron-rich ZnTPP core of a representative bow-tie complex selectively formed a charge-transfer complex with highly π-acidic 1,4,5,8,9,12-hexaazatriphenylene-2,3,6,7,10,11-heaxacarbonitrile but not with a π-donor such as pyrene. Thus, this work not only produced novel M′TPP-based bow-tie complexes and demonstrated their selective π-acid recognition capability, but also underscored the importance of proper structural characterization of supramolecular assemblies to ensure accurate depiction of their structure–property relationships.

Thermodynamically favored heteroleptic coordination of Pt(ii) corners with tetrapyridyl porphyrins and dicarboxylate ligands produces 2D bow-tie shaped complexes instead of previously mischaracterized 3D tetragonal prisms.  相似文献   

6.
The spin-lattice relaxation time (T 1) of7Li+ was measured in solutions of LiCl and LiClO4 in protic (MeOH, EtOH,n-PrOH,i-PrOH,n-BuOH, sec-BuOH, formamide, N-methylformamide) and aprotic (MeCN, acetone, methyl ethyl ketone, propylene carbonate, dimethyl sulfoxide, dimethylformamide, hexamethylphosphotriamide) solvents and in mixtures of H2O-formamide, H2O–N-methylformamide, H2O–N,N-dimethylformamide, H2O-DMSO, H2O-hexamethylphosphotriamide, and formamide-N,N-dimethylformamide at 25°C. The values of (1/T 1)0 obtained by extrapolation are discussed in terms of current theories of the magnetic relaxation of ionic nuclei. Linear correlations were found between (1/T 1)0 and Gutmann's donor numbers and Kosower's Z-values. These correlations indicate that relaxation of7Li+ is dominated by donor-acceptor interaction of the cation with solvent molecules. Concentration dependences of 1/T 1 for LiCl and LiClO4 differ from one another in a given solvent, a fact which is accounted for by a specific cation-anion short-range potential. The quantity 1/T 1 of7Li+ atC=1 mole per 55.5 moles of mixed solvent as a function of solvent composition show characteristic features, which are discussed in terms of the relaxation mechanism proposed.  相似文献   

7.
Transfer reagents are useful tools in chemistry to access metastable compounds. The reaction of [Cp′′2ZrCl2] with KSb(SiMe3)2 leads to the formation of the novel polyantimony triple decker complex [(Cp′′Zr)2(μ,η1:1:1:1:1:1-Sb6)] (1, Cp′′ = 1,3-di-tertbutyl-cyclopentadienyl), containing a chair-like Sb66− ligand. Compound 1 represents a valuable transfer reagent to form novel antimony ligand complexes. Thus, the reaction of 1 with CpR-substituted transition metal halides of nickel, cobalt and iron leads to the formation of a variety of novel Sbn ligand complexes, such as the cubane-like compounds [(Cp′′′Ni)43-Sb)4] (2) and [(Cp′′′Co)43-Sb4)] (3a) or the complexes [(CpBnCo)33-Sb)2] (4) and [(Cp′′′Fe)33-Sb)2] (5), representing a trigonal bipyramidal structure. Moreover, beside the transfer of Sb1 units, also the complete entity can be transferred as seen in the iron complex [(Cp′′′Fe)33,η4:4:4-Sb6)] (6). DFT calculations shed light on the bonding situation of the products.

The synthesis and characterization of the unique polyantimony complex [(Cp′′Zr)2(μ,η1:1:1:1:1:1-Sb6)] (1) is described. Compound 1 was used as antimony source to transfer Sbn units to late transition metal fragments [CpRM] (M = Fe, Co, Ni).  相似文献   

8.
Electrochemical behavior of hexafluoroniobate (Nb(V)F6), heptafluorotungstate (W(VI)F7), and oxotetrafluorovanadate (V(V)OF4) anions has been investigated in N-butyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide (BMPyrTFSA) ionic liquid at 298 K by means of cyclic voltammetry and chronoamperometry. Cyclic voltammograms at a Pt electrode showed that Nb(V)F6 anion is reduced to Nb(IV)F62− by a one-electron reversible reaction. Electrochemical reductions of W(VI)F7 and V(V)OF4 anions at a Pt electrode are quasi-reversible and irreversible reactions, respectively, according to cyclic voltammetry. The diffusion coefficients of Nb(V)F6, W(VI)F7 and V(V)OF4 determined by chronoamperometry are 1.34 × 10−7, 7.45 × 10−8 and 2.49 × 10−7 cm2 s−1, respectively. The Stokes radii of Nb(V)F6, W(VI)F7, and V(V)OF4 in BMPyrTFSA have been calculated to be 0.23, 0.38, and 0.12 nm, from the diffusion coefficients and viscosities obtained.  相似文献   

9.
A neutral metal complex, [Pt(dddt)2]° (1), has been obtained by oxidation of the [Pt(dddt)2] anion with excess (Bu4N)AuBr4 in nitrobenzene. Crystallographic data for 1a=17.854(9) Å,b=18.409(9) Å,c=4.717(5) Å, =68.83(2)°, space group P21/n,Z=4,d calc=2.55 g/cm3. In1 two independent centrosymmetric [Pt(dddt)2]° molecules are packed in stacks that form layers parallel to the (110) plane. The molecules of1 in the layers have shortened S...S contacts 3.491(9) Å, and 3.594(10) Å. The average bond lengths Pt-S 2.242(7) Å, S-C 1.71(2) Å and C=C 1.40(3) Å, together with the square-planar coordination of Pt in PtS4, suggest considerable conjugation in the metal cycles.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1207–1209, July, 1993.  相似文献   

10.
New RNA modifications are needed to advance our toolbox for targeted manipulation of RNA. In particular, the development of high-performance reporter groups facilitating spectroscopic analysis of RNA structure and dynamics, and of RNA–ligand interactions has attracted considerable interest. To this end, fluorine labeling in conjunction with 19F-NMR spectroscopy has emerged as a powerful strategy. Appropriate probes for RNA previously focused on single fluorine atoms attached to the 5-position of pyrimidine nucleobases or at the ribose 2′-position. To increase NMR sensitivity, trifluoromethyl labeling approaches have been developed, with the ribose 2′-SCF3 modification being the most prominent one. A major drawback of the 2′-SCF3 group, however, is its strong impact on RNA base pairing stability. Interestingly, RNA containing the structurally related 2′-OCF3 modification has not yet been reported. Therefore, we set out to overcome the synthetic challenges toward 2′-OCF3 labeled RNA and to investigate the impact of this modification. We present the syntheses of 2′-OCF3 adenosine and cytidine phosphoramidites and their incorporation into oligoribonucleotides by solid-phase synthesis. Importantly, it turns out that the 2′-OCF3 group has only a slight destabilizing effect when located in double helical regions which is consistent with the preferential C3′-endo conformation of the 2′-OCF3 ribose as reflected in the 3J (H1′–H2′) coupling constants. Furthermore, we demonstrate the exceptionally high sensitivity of the new label in 19F-NMR analysis of RNA structure equilibria and of RNA–small molecule interactions. The study is complemented by a crystal structure at 0.9 Å resolution of a 27 nt hairpin RNA containing a single 2′-OCF3 group that well integrates into the minor groove. The new label carries high potential to outcompete currently applied fluorine labels for nucleic acid NMR spectroscopy because of its significantly advanced performance.

The new 2′-OCF3 label for nucleic acid NMR spectroscopy carries high potential to outcompete currently applied fluorine labels because of significantly advanced performance.  相似文献   

11.
Two novel copper(II) complexes of formulas {[Cu(4-Hmpz)4][Cu(4-Hmpz)23-ox-κ2O1,O2:κO2′:κO1′)(ClO4)2]}n (1) and {[Cu(3,4,5-Htmpz)4]2[Cu(3,4,5-Htmpz)23-ox-κ2O1,O2:κO2′:κO1′)(H2O)(ClO4)]2[Cu2(3,4,5-Htmpz)4(µ-ox-κ2O1,O2:κ2O2′,O1′)]}(ClO4)4·6H2O (2) have been obtained by using 4-methyl-1H-pyrazole (4-Hmpz) and 3,4,5-trimethyl-1H-pyrazole (3,4,5-Htmpz) as terminal ligands and oxalate (ox) as the polyatomic inverse coordination center. The crystal structure of 1 consists of perchlorate counteranions and cationic copper(II) chains with alternating bis(pyrazole)(µ3-κ2O1,O2:κO2′:κO1′-oxalato)copper(II) and tetrakis(pyrazole)copper(II) fragments. The crystal structure of 2 is made up of perchlorate counteranions and cationic centrosymmetric hexanuclear complexes where an inner tetrakis(pyrazole)(µ-κ2O1,O2:κ2O2′,O1′-oxalato)dicopper(II) entity and two outer mononuclear tetrakis(pyrazole)copper(II) units are linked through two mononuclear aquabis(pyrazole)(µ3-κ2O1,O2:κO2′:κO1′-oxalato)copper(II) units. The magnetic properties of 1 and 2 were investigated in the temperature range 2.0–300 K. Very weak intrachain antiferromagnetic interactions between the copper(II) ions through the µ3-ox-κ2O1,O2:κO2′:κO1′ center occur in 1 [J = −0.42(1) cm−1, the spin Hamiltonian being defined as H = −J∑S1,i · S2,i+1], whereas very weak intramolecular ferromagnetic [J = +0.28(2) cm−1] and strong antiferromagnetic [J’ = −348(2) cm−1] couplings coexist in 2 which are mediated by the µ3-ox-κ2O1,O2:κO2′:κO1′ and µ-ox-κ2O1,O2:κ2O2′,O1′ centers, respectively. The variation in the nature and magnitude of the magnetic coupling for this pair of oxalato-centered inverse copper(II) complexes is discussed in the light of their different structural features, and a comparison with related oxalato-centered inverse copper(II)-pyrazole systems from the literature is carried out.  相似文献   

12.
The reactions of K2PtCl4 with the aminoacids, S-methyl-L-cysteine, S-ethyl-L-cysteine, S-benzyl-L-cysteine, S-para-nitro-benzyl-L-cysteine, S-diphenyl-methyl-L-cysteine, S-tribenzyl-L-cysteine and S-4′,4′-dimethoxy-diphenylmethyl-L-cysteine were studied in neutral or acidic aqueous solutions. Complexes of the formulae PtLCl2, [PtL2]Cl2 and Pt(L-H+)2, where L = aminoacid, were isolated in the solid state and their structures investigated with elemental analysis, conductivity measurements, IR, 1H NMR and 13CNMR spectra. The results show that the coordination sites of Pt(II) with the amino-acids are the N and S atoms, producing two diastereoisomers around the chiral sulphur atom, which were identified in the 1H NMR and 13CNMR spectra. The complexes PtLCl2 further react with the nucleosides guanosine and inosine. The complexes [PtL(nucl)2]Cl2 were isolated from these reactions and studied with the same methods. They showed a PtN7 bonding with the nucleosides and retained the N, S bondings with the aminoacids. As a result of the higher trans influence of S than N, the nucleoside molecule coordinated to the metal through N7 and trans to S has a weaker bond strength than the other, as it is revealed from the 1H NMR and 13C NMR spectra of these complexes.  相似文献   

13.
Despite the proven ability to form supramolecular assemblies via coordination to copper halides, organometallic building blocks based on four-membered cyclo-P4 ligands find only very rare application in supramolecular chemistry. To date, only three types of supramolecular aggregates were obtained based on the polyphosphorus end-deck complexes CpRTa(CO)24-P4) (1a: CpR = Cp′′; 1b: CpR = Cp′′′), with none of them, however, possessing a guest-accessible void. To achieve this target, the use of silver salts of the weakly coordinating anion SbF6 was investigated as to their self-assembly in the absence and in the presence of the template molecule P3Se4. The two-component self-assembly of the building block 1a and the coinage-metal salt AgSbF6 leads to the formation of 1D or 3D coordination polymers. However, when the template-driven self-assembly was attempted in the presence of an aliphatic dinitrile, the unprecedented barrel-like supramolecular host–guest assembly P3Se4@[{(Cp′′Ta(CO)24-P4))Ag}8]8+ of 2.49 nm in size was formed. Moreover, cyclo-P4-based supramolecules are connected in a 2D coordination network by dinitrile linkers. The obtained compounds were characterised by mass-spectrometry, 1H and 31P NMR spectroscopy and X-ray structure analysis.

A one-pot self-assembly template-controlled reaction is reported to result in a 2D coordination network of first host-guest assemblies P3Se4@[{(Cp′′Ta(CO)24-P4))Ag}8]8+ of 2.49 nm in size based on an organometallic complex with a cyclo-P4 end-deck.  相似文献   

14.
The first families of alkaline-earth stannylides [Ae(SnPh3)2·(thf)x] (Ae = Ca, x = 3, 1; Sr, x = 3, 2; Ba, x = 4, 3) and [Ae{Sn(SiMe3)3}2·(thf)x] (Ae = Ca, x = 4, 4; Sr, x = 4, 5; Ba, x = 4, 6), where Ae is a large alkaline earth with direct Ae–Sn bonds, are presented. All complexes have been characterised by high-resolution solution NMR spectroscopy, including 119Sn NMR, and by X-ray diffraction crystallography. The molecular structures of [Ca(SnPh3)2·(thf)4] (1′), [Sr(SnPh3)2·(thf)4] (2′), [Ba(SnPh3)2·(thf)5] (3′), 4, 5 and [Ba{Sn(SiMe3)3}2·(thf)5] (6′), most of which crystallised as higher thf solvates than their parents 1–6, were established by XRD analysis; the experimentally determined Sn–Ae–Sn′ angles lie in the range 158.10(3)–179.33(4)°. In a given series, the 119Sn NMR chemical shifts are slightly deshielded upon descending group 2 from Ca to Ba, while the silyl-substituted stannyls are much more shielded than the phenyl ones (δ119Sn/ppm: 1′, −133.4; 2′, −123.6; 3′, −95.5; 4, −856.8; 5, −848.2; 6′, −792.7). The bonding and electronic properties of these complexes were also analysed by DFT calculations. The combined spectroscopic, crystallographic and computational analysis of these complexes provide some insight into the main features of these unique families of homoleptic complexes. A comprehensive DFT study (Wiberg bond index, QTAIM and energy decomposition analysis) points at a primarily ionic Ae–Sn bonding, with a small covalent contribution, in these series of complexes; the Sn–Ae–Sn′ angle is associated with a flat energy potential surface around its minimum, consistent with the broad range of values determined by experimental and computational methods.

The complete series of heterobimetallic alkaline-earth distannyls [Ae{SnR3}2·(thf)x] (Ae = Ca, Sr, Ba) have been prepared for R = Ph and SiMe3, and their bonding and electronic properties have been comprehensively investigated.  相似文献   

15.
Reaction of 2,2′-bipyridine (2,2′-bipy) or 1,10-phenantroline (phen) with [Mn(Piv)2(EtOH)]n led to the formation of binuclear complexes [Mn2(Piv)4L2] (L = 2,2′-bipy (1), phen (2); Piv is the anion of pivalic acid). Oxidation of 1 or 2 by air oxygen resulted in the formation of tetranuclear MnII/III complexes [Mn4O2(Piv)6L2] (L = 2,2′-bipy (3), phen (4)). The hexanuclear complex [Mn6(OH)2(Piv)10(pym)4] (5) was formed in the reaction of [Mn(Piv)2(EtOH)]n with pyrimidine (pym), while oxidation of 5 produced the coordination polymer [Mn6O2(Piv)10(pym)2]n (6). Use of pyrazine (pz) instead of pyrimidine led to the 2D-coordination polymer [Mn4(OH)(Piv)72-pz)2]n (7). Interaction of [Mn(Piv)2(EtOH)]n with FeCl3 resulted in the formation of the hexanuclear complex [MnII4FeIII2O2(Piv)10(MeCN)2(HPiv)2] (8). The reactions of [MnFe2O(OAc)6(H2O)3] with 4,4′-bipyridine (4,4′-bipy) or trans-1,2-(4-pyridyl)ethylene (bpe) led to the formation of 1D-polymers [MnFe2O(OAc)6L2]n·2nDMF, where L = 4,4′-bipy (9·2DMF), bpe (10·2DMF) and [MnFe2O(OAc)6(bpe)(DMF)]n·3.5nDMF (11·3.5DMF). All complexes were characterized by single-crystal X-ray diffraction. Desolvation of 11·3.5DMF led to a collapse of the porous crystal lattice that was confirmed by PXRD and N2 sorption measurements, while alcohol adsorption led to porous structure restoration. Weak antiferromagnetic exchange was found in the case of binuclear MnII complexes (JMn-Mn = −1.03 cm−1 for 1 and 2). According to magnetic data analysis (JMn-Mn = −(2.69 ÷ 0.42) cm−1) and DFT calculations (JMn-Mn = −(6.9 ÷ 0.9) cm−1) weak antiferromagnetic coupling between MnII ions also occurred in the tetranuclear {Mn4(OH)(Piv)7} unit of the 2D polymer 7. In contrast, strong antiferromagnetic coupling was found in oxo-bridged trinuclear fragment {MnFe2O(OAc)6} in 11·3.5DMF (JFe-Fe = −57.8 cm−1, JFe-Mn = −20.12 cm−1).  相似文献   

16.
A reversible carbon–boron bond formation has been observed in the reaction of the coordinatively unsaturated, cyclometalated, Pt(ii) complex [Pt(ItBuiPr′)(ItBuiPr)][BArF], 1, with tricoordinated boranes HBR2. X-ray diffraction studies provided structural snapshots of the sequence of reactions involved in the process. At low temperature, we observed the initial formation of the unprecedented σ-BH complexes [Pt(HBR2)(ItBuiPr′)(ItBuiPr)][BArF], one of which has been isolated. From −15 to +10 °C, the σ-BH species undergo a carbon–boron coupling process leading to the platinum hydride derivative [Pt(H)(ItBuiPr–BR2)(ItBuiPr)][BArF], 4. Surprisingly, these compounds are thermally unstable undergoing carbon–boron bond cleavage at room temperature that results in the 14-electron Pt(ii) boryl species [Pt(BR2)(ItBuiPr)2][BArF], 2. This unusual reaction process has been corroborated by computational methods, which indicate that the carbon–boron coupling products 4 are formed under kinetic control whereas the platinum boryl species 2, arising from competitive C–H bond coupling, are thermodynamically more stable. These findings provide valuable information about the factors governing productive carbon–boron coupling reactions at transition metal centers.

A reversible carbon–boron bond formation has been observed in the reaction of the coordinatively unsaturated, cyclometalated, Pt(ii) complex [Pt(ItBuiPr′)(ItBuiPr)][BArF], 1, with tricoordinated boranes HBR2.  相似文献   

17.
A series of hybrid uranocenes consisting of uranium(iv) sandwiched between cyclobutadienyl (Cb) and cyclo-octatetraenyl (COT) ligands has been synthesized, structurally characterized and studied computationally. The dimetallic species [(η4-Cb′′′′)(η8-COT)U(μ:η28-COT)U(THF)(η4-Cb′′′′)] (1) forms concomitantly with, and can be separated from, monometallic [(η4-Cb′′′′)U(THF)(η8-COT)] (2) (Cb′′′′ = 1,2,3,4-tetrakis(trimethylsilyl)cyclobutadienyl, COT = cyclo-octatetraenyl). In toluene solution at room temperature, 1 dissociates into 2 and the unsolvated uranocene [(η4-Cb′′′′)U(η8-COT)] (3). By applying a high vacuum, both 1 and 2 can be converted directly into 3. Using bulky silyl substituents on the COT ligand allowed isolation of base-free [(η4-Cb′′′′)U{η8-1,4-(iPr3Si)2C8H6}] (4), with compounds 3 and 4 being new members of the bis(annulene) family of actinocenes and the first to contain a cyclobutadienyl ligand. Computational studies show that the bonding in the hybrid uranocenes 3 and 4 has non-negligible covalency. New insight into actinocene bonding is provided by the complementary interactions of the different ligands with uranium, whereby the 6d orbitals interact most strongly with the cyclobutadienyl ligand and the 5f orbitals do so with the COT ligands. The redox-neutral activation of diethyl ether by [(η4-Cb′′′′)U(η8-C8H8)] is also described and represents a uranium-cyclobutadienyl cooperative process, potentially forming the basis of further small-molecule activation chemistry.

The synthesis, structure and bonding in a series of hybrid uranocenes consisting of cyclobutadienyl and cyclo-octatetraenyl ligands is described.  相似文献   

18.
By reacting [{Cp‴Fe(CO)2}2(µ,η1:1-P4)] (1) with in situ generated phosphenium ions [Ph2P][A] ([A] = [OTf] = [O3SCF3], [PF6]), a mixture of two main products of the composition [{Cp‴Fe(CO)2}2(µ,η1:1-P5(C6H5)2)][PF6] (2a and 3a) could be identified by extensive 31P NMR spectroscopic studies at 193 K. Compound 3a was also characterized by X-ray diffraction analysis, showing the rarely observed bicyclo[2.1.0]pentaphosphapentane unit. At room temperature, the novel compound [{Cp‴Fe}(µ,η4:1-P5Ph2){Cp‴(CO)2Fe}][PF6] (4) is formed by decarbonylation. Reacting 1 with in situ generated diphenyl arsenium ions gives short-lived intermediates at 193 K which disproportionate at room temperature into tetraphenyldiarsine and [{Cp‴Fe(CO)2}441:1:1:1-P8)][OTf]2 (5) containing a tetracyclo[3.3.0.02,7.03,6]octaphosphaoctane ligand.  相似文献   

19.
We present a quantum chemical analysis of the 18F-fluorination of 1,3-ditosylpropane, promoted by a quaternary ammonium salt (tri-(tert-butanol)-methylammonium iodide (TBMA-I) with moderate to good radiochemical yields (RCYs), experimentally observed by Shinde et al. We obtained the mechanism of the SN2 process, focusing on the role of the –OH functional groups facilitating the reactions. We found that the counter-cation TBMA+ acts as a bifunctional promoter: the –OH groups function as a bidentate ‘anchor’ bridging the nucleophile [18F]F and the –OTs leaving group or the third –OH. These electrostatic interactions cooperate for the formation of the transition states of a very compact configuration for facile SN2 18F-fluorination.  相似文献   

20.
Neutral η1-benzylnickel carbene complexes, [Ni(η1-CH2C6H5)(IiPr)(PMe3)(Cl)] (3) (IiPr = 1,3-bis-(2,6-diisopropylphenyl)imidazol-2-ylidene) and [Ni(η1-CH2C6H5)(SIiPr)(PMe3)(Cl)] (4) (SIiPr = 1,3-bis-(2,6-diisopropylphenyl)imidazolin-2-ylidene), were prepared by the reaction between [Ni(η3-CH2C6H5)(PMe3)(Cl)] and an equivalent amount of the corresponding free N-heterocyclic carbene. The preparation of η3-benzylnickel carbene complexes, [Ni(η3-CH2C6H5)(IiPr)(Cl)] (5) and [Ni(η3-CH2C6H5)(SIiPr)(Cl)] (6) were carried out by the abstraction of PMe3 from 3 and 4 by the treatment of B(C6F5)3. The treatment of AgX on 5 and 6 produced the anion-exchanged complexes, [Ni(η3-CH2C6H5)(NHC)(X)] (7, NHC = IiPr, X = O2CCF3; 8, NHC = IiPr, X = O3SCF3; 9, NHC = SIiPr, X = O2CCF3; 10, NHC = SIiPr, X = O3SCF3). The solid state structures of 3 and 10 were determined by X-ray crystallography. The η3-benzyl complexes of IiPr (5, 7, and 8) alone, in the absence of any activators such as borate and MAO, showed good catalytic activity towards the vinyl-type norbornene polymerization. The catalyst was thermally robust and the activity increases as the temperature rises to 130 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号