首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Atomic force microscope technique is widely used for the spatial narrow deposition of molecules inside the bare space of preexisting self-assembled monolayer (SAM) matrix. Using molecular dynamics simulation, we studied the formation of positively patterned SAM from a globule of 1-octadecanethiol (ODT) on predesigned SAM matrix of 1-dodecanethiol (DDT) and effect of temperature on it. The alkyl chains of ODT SAM were densely packed and ordered by means of chemisorption through sulfur atoms. The circular SAM of ODT contained defects due to the molecules those were standing upside down or trapped inside ODT SAM. We found that with the increase of temperature, these defects moved out by flipping of inverted ODT molecules or building spaces to be adsorbed on Au surface. The ODT molecules on the top of the pile of stable circular SAM or those are upside down and trapped disperse in a unique fashion namely serial pushing through which molecules firstly make a free space to enter inside the adsorbed thiol molecules and then push neighboring molecules to get enough space to be adsorbed on the gold surface. The stability of ODT SAM was confirmed by analyzing different structural properties such as tilt angle, tilt orientation. and backbone orientation. We also calculated the diffusion coefficient of the ODT molecules which were on the top of SAM island. © 2019 Wiley Periodicals, Inc.  相似文献   

2.
The increasing antimicrobial-resistant prevalence has become a severe health problem. It has led to the invention of a new antimicrobial agent such as antimicrobial peptides. Heteroscorpine-1 is an antimicrobial peptide that has the ability to kill many bacterial strains. It consists of 76 amino acid residues with a cecropin-like region in N-terminal and a defensin-like region in the C-terminal. The cecropin-like region from heteroscorpine-1 (CeHS-1) is similar to cecropin B, but it lost its glycine-proline hinge region. The bioinformatics prediction was used to help the designing of mutant peptides. The addition of glycine-proline hinge and positively charged amino acids, the deletion of negatively charged amino acids, and the optimization of the hydrophobicity of the peptide resulted in two mutant peptides, namely, CeHS-1 GP and CeHS-1 GPK. The new mutant peptide showed higher antimicrobial activity than the native peptide without increasing toxicity. The interaction of the peptides with the membrane showed that the peptides were capable of disrupting both the inner and outer bacterial cell membrane. Furthermore, the SEM analysis showed that the peptides created the pore in the bacterial cell membrane resulted in cell membrane disruption. In conclusion, the mutants of CeHS-1 had the potential to develop as novel antimicrobial peptides.  相似文献   

3.
多巴胺作为脑组织内一种重要的神经递质在细胞膜内外需要做合适的迁移,发挥其功能. 多巴胺在细胞膜中扩散和透过过程的分子动力学涉及到多巴胺分子保护通道的畅通,与精神分裂症等病症有关. 本文采用1-棕榈酰-2-油酰-卵磷脂(POPC)双层膜模拟细胞膜,通过分子动力学模拟获得多巴胺分子在细胞膜中和透过细胞膜运动自由能变化,探讨多巴胺在细胞膜中扩散和透过过程的分子动力学. 多巴胺分子在POPC磷脂双层膜中间层做扩散运动的自由能变化为10-54 kJ·mol-1 (310 K),显示多巴胺分子在细胞膜中间层很容易横向和纵向扩散,保持多巴胺保护通道的畅通. 多巴胺分子不容易透过POPC磷脂双层膜,因为透过过程自由能能垒为117-125 kJ·mol-1 (310 K). 因此,人脑组织神经细胞里生产的多巴胺分子可以储藏在生物细胞膜空间. 而过量的多巴胺则可以通过保护通道进入磷脂双层膜结构中间,做横向和纵向扩散运动,并且透过细胞膜,避免精神分裂症的发生. 生物细胞膜的正常功能对于保持多巴胺保护通道的畅通和避免精神分裂症的出现都是重要的. 研究结果与其它实验观察和结果相一致.  相似文献   

4.
Computer simulations reveal the unique conformation of or erythro diisotactic polynorbornene, a polymer with numerous important applications in microelectronics. While previous simulations suggested that this polymer adopts a helix‐kink morphology, the results presented herein indicate that the reversal of the helix symmetry is the origin of such kinks which cause a transition from a rigid‐rod conformation to a random coil with increasing molecular weight. An RIS model was developed that accurately predicts the unique conformation of this polymer. This model predicts a rigid‐rod helical conformation that eventually transitions to a random coil at a degree of polymerization of approximately 500.

  相似文献   


5.
Using computer simulations as a tool for thought experiments, we investigate the influence of the helical backbone geometry in the association process and the final structures of a simple model which mimics parallel, two‐stranded coiled‐coil proteins. We define three types of helices: two of them have straight helical axes and 3.5 or 3.6 residues per helical turn; the third type presents a coiled helical axis, according to the canonical scheme defined by Crick. By using a Monte Carlo simulation algorithm, we observe that the three models exhibit different transition temperatures for the formation of the dimeric structure from two independent peptides, and a different behavior concerning the appearance of out‐of‐register structures. The energy minimized dimer structures present strong deviations from the correct association for straight helices with 3.6 residues/turn, especially for long peptides, deviations which are absent for the other two types when only the burial of hydrophobic residues is considered. A careful analysis of the energies for the out‐of‐register configurations and the contact maps reveals also differences between dimers resulting from the model with Crick parameterization and with 3.5 residues/turn. The results presented in this paper may be relevant for the design of simple models which use rigid α‐helices built from predicted elements of secondary structure.

Top views of the helical models used in this work.  相似文献   


6.
Structural and dynamical properties of the TiO(2+) ion in aqueous solution have been investigated by using the new ab initio quantum mechanical charge field (QMCF) molecular dynamics (MD) formalism, which does not require any other potential functions except those for solvent-solvent interactions. Both first and second hydration shell have been treated at Hartree-Fock (HF) quantum mechanical level. A Ti-O bond distance of 1.5 A was observed for the [Ti=O](2+) ion. The first hydration shell of the ion shows a varying coordination number ranging from 5 to 7, five being the dominant one and representing one axial and four equatorial water molecules directly coordinated to Ti, which are located at 2.3 A and 2.1 A, respectively. The flexibility in the coordination number reflects the fast exchange processes, which occur only at the oxo atom, where water ligands are weakly bound through hydrogen bonds. Considering the first shell hydration, the composition of the TiO(2+) hydrate can be characterized as [(H(2)O)(0.7)(H(2)O)(4) (eq)(H(2)O)(ax)](2+). The second shell consists in average of 12 water molecules located at a mean distance of 4.4 A. Several other structural parameters such as radial and angular distribution functions and coordination number distributions were analyzed to fully characterize the hydration structure of the TiO(2+) ion in aqueous solution. For the dynamics of the TiO(2+) ion, different sets of dynamical parameters such as Ti=O, Ti-O(eq), and Ti-O(ax) stretching frequencies and ligands' mean residence times were evaluated. During the simulation time of 15 ps, 3 water exchange processes in the first shell were observed at the oxo atom, corresponding to a mean residence time of 3.6 ps. The ligands' mean residence time for the second shell was determined as 3.5 ps.  相似文献   

7.
Summary We have developed a computer program with the necessary mathematical formalism for the geometric characterization of distorted conformations of alpha-helices proteins, such as those that can potentially be sampled during typical molecular dynamics simulations. This formalism has been incorporated into TRAJELIX, a new module within the SIMULAID framework (http://inka.mssm.edu/~mezei/simulaid/) that is capable of monitoring distortions of alpha-helices in terms of their displacement, global and local tilting, rotation around their axes, compression/extension, winding/unwinding, and bending. Accurate evaluation of these global and local structural properties of the helix can help study possible intramolecular and intermolecular changes in the helix packing of alpha-helical membrane proteins, as shown here in an application to the interacting helical domains of rhodopsin dimers. Quantification of the dynamic structural behavior of alpha-helical membrane proteins is critical for our understanding of signal transduction, and may enable structure-based design of more specific and efficient drugs.  相似文献   

8.
The extremely slow diffusion of the molecule n-pentane caused by the hopping from cage-to-cage in zeolite ZK5 has been investigated by transition state theory (TST). Such slow diffusion cannot be accessed by usual molecular dynamics simulation techniques. The calculation of the partition function ratio needed for TST was enabled by a recently developed method, the so-called high-temperature configuration-space exploration (HTCE). Dynamical corrections for recrossing events have also been taken into account. The obtained intra-zeolite self-diffusion constant between 247 and 317 K of 10−16–10−15 m2 s−1 falls in the range of 10−18–10−15 m2 s−1 observed experimentally. The calculated energetic barrier between two neighboring cages of 29 kJ mol−1 is in good agreement with that of 28 ± 5 kJ mol−1 obtained from NMR measurement.  相似文献   

9.
The ubiquitous presence of nanoplastics (NPs) in natural ecosystems is a serious concern, as NPs are believed to threaten every life form on Earth. Micro- and nanoplastics enter living systems through multiple channels. Cell membranes function as the first barrier of entry to NPs, thus playing an important biological role. However, in-depth studies on the interactions of NPs with cell membranes have not been performed, and effective theoretical models of the underlying molecular details and physicochemical behaviors are lacking. In the present study, we investigated the uptake of polyvinyl chloride (PVC) nanoparticles by Arabidopsis thaliana root cells, which leads to cell membrane leakage and damage to membrane integrity. We performed all-atom molecular dynamics simulations to determine the effects of PVC NPs on the properties of the multicomponent lipid bilayer. These simulations revealed that PVCs easily permeate into model lipid membranes, resulting in significant changes to the membrane, including reduced density and changes in fluidity and membrane thickness. Our exploration of the interaction mechanisms between NPs and the cell membrane provided valuable insights into the effects of NPs on membrane structure and integrity.  相似文献   

10.
Breast cancer is one of the most prevalent cancers in the world. Traditionally, medicinal plants have been used to cure various types of diseases and disorders. Based on a literature survey, the current study was undertaken to explore the anticancer potential of Foeniculum vulgare Mill. phytoconstituents against breast cancer target protein (PDB ID: 6CHZ) by the molecular docking technique. Molecular docking was done using Autodock/vina software. Toxicity was predicted by the Protox II server and drug likeness was predicted by Molinspiration. 100 ns MD simulation of the best protein-ligand complexes were done using the Amber 18 tool. The present molecular docking investigation has revealed that among the 40 selected phytoconstituents of F. vulgare, α-pinene and D-limonene showed best binding energy (−6 and −5.9 kcal/mol respectively) with the breast cancer target. α-Pinene and D-limonene followed all the parameters of toxicity, and 100 ns MD simulations of α-pinene and D-limonene complexes with 6CHZ were found to be stable. α-Pinene and D-limonene can be used as new therapeutic agents to cure breast cancer.  相似文献   

11.
Various types of oxygenated fatty acids termed ‘oxylipins’ are involved in plant response to herbivory. Oxylipins like jasmonic acid (JA) and green leafy volatiles (GLVs) are formed by the action of enzymes like allene oxide synthase (AOS) and hydroxyperoxide lyase (HPL) respectively. In this study, we focus on AOS of Oryza sativa sb. Japonica, that interact with 9- and 13- hydroxyperoxides to produce intermediates of jasmonate pathway and compare it with rice HPL that yields GLVs. We attempt to elucidate the interaction pattern by computational docking protocols keeping the Arabidopsis AOS system as the reference model system. Both 9-hydroxyperoxide and 13-hydroxyperoxide fit into the active site of AOS completely with Phe347, Phe92, Ile463, Val345, and Asn278 being the common interacting residues. Phe347 and Phe92 were mutated with Leucine and docked again with the hydroxyperoxides. The Phe347  Leu347 mutant showed a different mode of action than AOS-hydroxyperoxide complex with Trp413 in direct bonding with the OOH group of 9-hydroxyperoxide. The loss of Lys88-OOH interaction in 13-hydroxyperoxide and loss-of-interaction of Leu347 indicated the importance of Phe347 residue in hydroxyperoxide catalysis. The second mutant Phe92  Leu92 also shows a very different interaction pattern with 13-hydroxyperoxide but not with 9-hydroxyperoxide.Therefore, it can be concluded that Phe347 is more crucial for AOS functionality than Phe92. The aromatic ring of a Phenylalanine residue is important for catalysis and its mutation affects the binding of the two ligands. Another important residue is Asn278 which is an important part of the AOS catalytic site for maintaining stability and can be compared with the Arabidopsis AOS residue Asn321. Lastly, the interaction of HPL with these two derivatives involves Leu363 residue instead of Phe347 and thus, validating the importance of Phe  Leu substitution to be the reason of different modes of action that result in completely different products from same substrates.  相似文献   

12.
The hydrolysis of 1S,2Strans‐methylstyrene oxide by soluble epoxide hydrolases is studied by a 4‐ns molecular dynamics (MD) simulation. An analysis of the extent of correlated motions in the active site was carried out. Based on the calculated cross correlation coefficients form the covariance matrix, a new correlation parameter, termed the supercorrelation coefficient, is introduced. The supercorrelation coefficient indicates the extent to which two amino acid residues move in a correlated manner with respect to all other residues in the protein. The resulting map of the supercorrelation coefficients was used to identify segments of the protein that may show collective domain movements. Interestingly, an anti‐correlated motion is located across the active site, involving the catalytic triad and the tyrosines. This may suggest that if a link exists between enzyme dynamics and catalysis, it may be through an anti‐correlated collective domain movement that compresses the active site, thus initiating the conversion of E–NAC to E–TS. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2004  相似文献   

13.
Human immunodeficiency virus type 1 (HIV-1) integrase (IN) is an essential enzyme in the lifecycle of this virus and also an important target for the study of anti-HIV drugs. The binding mode of the wild type IN core domain and its G140S mutant with L-Chicoric acid (LCA) inhibitor were investigated by using multiple conformation molecular docking and molecular dynamics (MD) simulation. Based on the binding modes, the drug resistance mechanism was explored for the G140S mutant of IN with LCA. The results indicate that the binding site of the G140S mutant of IN core domain with LCA is different from that of the core domain of the wild type IN, which leads to the partial loss of inhibition potency of LCA. The flexibility of the IN functional loop region and the interactions between Mg2 ion and the three key residues (i.e., D64, D116, E152) stimulate the biological operation of IN. The drug resistance also lies in several other important effects, such as the repulsion between LCA and E152 in the G140S mutant core domain, the weakening of K159 binding with LCA and Y143 pointing to the pocket of the G140S mutant. All of the above simulation results agree well with experimental data, which provide us with some helpful information for designing the drug of anti-HIV based on the structure of IN.  相似文献   

14.
The conformational transformation of a 30-residue peptide H(Ala-Gly-Ser-Gly-AIa-Gly)5OH, i.e., (AGSGAG)5, extracted from highly crystalline region of Bombyx mori (B. mori) silk fibroin was described by using the high resolution solid state 13^C NMR, and CD spectroscopies. Based on the conformation-dependent 13^C NMR chemical shifts of the Ala, Gly and Ser residues and the line-shape analysis of the conformation sensitive Ala Cβ resonance, the peptide revealed a strong preference for silk Ⅱ structural form, i,e,, an antiparallel fl-sheet structure (φ= - 140±20°and ψ= 135±20°) in solid state. On the contrary, the CD spectra of this peptide in the two non-native hexafluorinated fibre spinning solvents, hexafluoroisopropanol (HFIP) and hexafluoroacetone (HFA), exhibited the existence of an unusual tightly-folded conformation resembling 310-helix (φ=- 60±20° and ψ=-30±20°), as judged from the R ratio of [θ]222/[θ]203 in HFIP solution, whereas a dynamically averaged unordered structure in HFA, Taken together, the information inclined to hypothesis that the primary structure of the highly crystalline regions of B. mori silk fibroin may be easily accessible to the large conformational changes, which in turn may be critical for facilitating the structural transformation from unprocessed silk fibroin (silk I form) to processed silk fiber (silk Ⅱform).  相似文献   

15.
Early oligomerization of human islet amyloid polypeptide (hIAPP), which is accountable for β-cell death, has been implicated in the progression of type 2 diabetes mellitus. Some researches have shown the connection between hIAPP and Alzheimer's disease as well. However, the mechanism of peptide accumulation and associated cytotoxicity remains unclear. Due to the unique properties and significant role of histidine in protein sequences, here for the first time, the tautomeric effect of histidine at the early stages of amylin misfolding was investigated via molecular dynamics simulations. Considering Tau and Pi tautomeric forms of histidine (Tau and Pi tautomers are denoted as ϵ and δ, respectively), simulations were performed on two possible isomers of amylin. Our analysis revealed a higher probability of transient α-helix generation in the δ isomer in monomeric form. In dimeric forms, the δδ and δϵ conformations showed an elevated amount of α-helix and lower coil in comparison to the ϵϵ dimer. Due to the significant role of α-helix in membrane disruption and transition to β-sheet structure, these results may imply a noticeable contribution of the δ isomer and the δδ and δϵ dimers rather than ϵ and ϵϵ conformations in the early stages of diabetes initiation. Our results may aid in elucidating the hIAPP self-association process in the etiology of amyloidosis.  相似文献   

16.
Our ability to shape and finish a component by combined methods of fabrication including (but not limited to) subtractive, additive, and/or no theoretical mass-loss/addition during the fabrication is now popularly known as solid freeform fabrication (SFF). Fabrication of a telescope mirror is a typical example where grinding and polishing processes are first applied to shape the mirror, and thereafter, an optical coating is usually applied to enhance its optical performance. The area of nanomanufacturing cannot grow without a deep knowledge of the fundamentals of materials and consequently, the use of computer simulations is now becoming ubiquitous. This article is intended to highlight the most recent advances in the computation benefit specific to the area of precision SFF as these systems are traversing through the journey of digitalization and Industry-4.0. Specifically, this article demonstrates that the application of the latest materials modelling approaches, based on techniques such as molecular dynamics, are enabling breakthroughs in applied precision manufacturing techniques.  相似文献   

17.
李海茹  张层  李思殿 《化学学报》2022,80(7):888-895
基于第一性原理, 系统地研究了Ben (n=1~3)对B12团簇结构的调控. 结果表明: 团簇BeB12全局极小结构为Cs对称性准平面结构, 而Be2B12和Be3B12最稳定的结构均为笼状结构, 对称性分别为CsC2v. 随着Ben (n=1~3)原子数的增加, 团簇B12由准平面结构过渡到笼状结构, 且Be倾向内嵌在B12笼状结构表面的B7或B8单元环中, 通过离子和共价作用形成稳定Be&B7和Be&B8单元, 从而稳定笼状结构. 自然键轨道(NBO)分析表明, 团簇Cs BeB12, Cs Be2B12, C2v Be3B12内部存在电子转移情况, Be原子2s轨道上失去电子, Be—B键主要以离子作用为主, 同时也存在共价作用. 成键分析显示Cs Be2B12C2v Be3B12的π键遵循球状芳香性2(n+1)2 (n=1)电子计数规则, 表明该团簇具有球状芳香性. 预测了三个结构的红外和拉曼光谱, 为以后的合成实验和数据表征提供了理论基础.  相似文献   

18.
Molecular dynamics simulations of hexapeptides TFDWMK and LFPWMR; the highly conserved regions of Hox proteins Hox B1 and Hox B8, respectively, are carried out starting from extended structures to investigate their conformational space in water solution. In addition, we have studied TADWMK and TADAMK, where the aromatic residues Phenylalanine and Tryptophan were successively substituted for Alanine to investigate effects from the presence/absence of aromatic amino acids and interactions between them to folding behavior. The backbone of the hexapeptides in all simulations folds to a similar conformation found in experimental studies in solution. Intramolecular, hydrophobically driven interactions between the aromatic residues and internal hydrogen bonds are found to stabilize the conformations.  相似文献   

19.
Recent discoveries about functional mechanisms of proteins in the TMEM16 family of phospholipid scramblases have illuminated the dual role of the membrane as both the substrate and a mechanistically responsive environment in the wide range of physiological processes and genetic disorders in which they are implicated. This is highlighted in the review of recent findings from our collaborative investigations of molecular mechanisms of TMEM16 scramblases that emerged from iterative functional, structural, and computational experimentation. In the context of this review, we present new MD simulations and trajectory analyses motivated by the fact that new structural information about the TMEM16 scramblases is emerging from cryo-EM determinations in lipid nanodiscs. Because the functional environment of these proteins in in vivo and in in vitro is closer to flat membranes, we studied comparatively the responses of the membrane to the TMEM16 proteins in flat membranes and nanodiscs. We find that bilayer shapes in the nanodiscs are very different from those observed in the flat membrane systems, but the function-related slanting of the membrane observed at the nhTMEM16 boundary with the protein is similar in the nanodiscs and in the flat bilayers. This changes, however, in the bilayer composed of longer-tail lipids, which is thicker near the phospholipid translocation pathway, which may reflect an enhanced tendency of the long tails to penetrate the pathway and create, as shown previously, a nonconductive environment. These findings support the correspondence between the mechanistic involvement of the lipid environment in the flat membranes, and the nanodiscs. © 2019 Wiley Periodicals, Inc.  相似文献   

20.
We have reviewed our previous work regarding induction or control of a peptide helix sense through chiral stimulus to the peptide chain terminus. An optically inactive 3(10)-helix designed mainly with unusual alpha-amino acid residues was commonly employed. Such an N-terminal-free peptide generates a preferred helix sense by chiral acid molecule. A helix sense pre-directed in chiral sequence is also influenced or controlled by the chiral sign of such external molecule. Here free amide groups in the 3(10)-helical N-terminus participate in the formation of a multipoint coordinated complex. The terminal asymmetry produces the noncovalent chiral domino effect (NCDE) to influence the whole helix sense. The NCDE-mediated control of helicity provides the underlying chiral nature of protein-mimicking helical backbones: notably, chiral recognition at the terminus and modulation of helical propensity through chiral stimulus. The above items from our previous reports have been outlined and reviewed together with their significance in biopolymer science and chiral chemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号