共查询到20条相似文献,搜索用时 15 毫秒
1.
Lamya H. Al-Wahaibi Mario A. Macías Olivier Blacque Luke S. Zondagh Jacques Joubert Subbiah Thamotharan María Judith Percino Ahmed A. B. Mohamed Ali A. El-Emam 《Molecules (Basel, Switzerland)》2022,27(21)
Structural analysis and docking studies of three adamantane-linked 1,2,4-triazole N-Mannich bases (1–3) are presented. Compounds 1, 2 and 3 crystallized in the monoclinic P21/c, P21 and P21/n space groups, respectively. Crystal packing of 1 was stabilized by intermolecular C-H⋯O interactions, whereas compounds 2 and 3 were stabilized through intermolecular C-H⋯N, C-H⋯S and C-H⋯π interactions. The energy frameworks for crystal structures of 1–3 were described. The substituent effect on the intermolecular interactions and their contributions were described on the basis of Hirshfeld surface analyses. The 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) inhibition potential, pharmacokinetic and toxicity profiles of compounds 1–3 were determined using in silico techniques. Molecular docking of the compounds into the 11β-HSD1 active site showed comparable binding affinity scores (−7.50 to −8.92 kcal/mol) to the 11β-HSD1 co-crystallized ligand 4YQ (−8.48 kcal/mol, 11β-HSD1 IC50 = 9.9 nM). The compounds interacted with key active site residues, namely Ser170 and Tyr183, via strong hydrogen bond interactions. The predicted pharmacokinetic and toxicity profiles of the compounds were assessed, and were found to exhibit excellent ADMET potential. 相似文献
2.
3.
Victor S. Batista Adriano Marques Gonalves Nailton M. Nascimento-Júnior 《Molecules (Basel, Switzerland)》2022,27(23)
The neuronal nicotinic acetylcholine receptors (nAChRs) belong to the ligand-gated ion channel (GLIC) group, presenting a crucial role in several biological processes and neuronal disorders. The α4β2 and α7 nAChRs are the most abundant in the central nervous system (CNS), being involved in challenging diseases such as epilepsy, Alzheimer’s disease, schizophrenia, and anxiety disorder, as well as alcohol and nicotine dependencies. In addition, in silico-based strategies may contribute to revealing new insights into drug design and virtual screening to find new drug candidates to treat CNS disorders. In this context, the pharmacophore maps were constructed and validated for the orthosteric sites of α4β2 and α7 nAChRs, through a docking-based Comparative Intermolecular Contacts Analysis (dbCICA). In this sense, bioactive ligands were retrieved from the literature for each receptor. A molecular docking protocol was developed for all ligands in both receptors by using GOLD software, considering GoldScore, ChemScore, ASP, and ChemPLP scoring functions. Output GOLD results were post-processed through dbCICA to identify critical contacts involved in protein-ligand interactions. Moreover, Crossminer software was used to construct a pharmacophoric map based on the most well-behaved ligands and negative contacts from the dbCICA model for each receptor. Both pharmacophore maps were validated by using a ROC curve. The results revealed important features for the ligands, such as the presence of hydrophobic regions, a planar ring, and hydrogen bond donor and acceptor atoms for α4β2. Parallelly, a non-planar ring region was identified for α7. These results can enable fragment-based drug design (FBDD) strategies, such as fragment growing, linking, and merging, allowing an increase in the activity of known fragments. Thus, our results can contribute to a further understanding of structural subunits presenting the potential for key ligand-receptor interactions, favoring the search in molecular databases and the design of novel ligands. 相似文献
4.
Imran Ahmad Khan Furqan Ahmad Saddique Sana Aslam Usman Ali Ashfaq Matloob Ahmad Sami A. Al-Hussain Magdi E. A. Zaki 《Molecules (Basel, Switzerland)》2022,27(18)
The α-glucosidase enzyme, located in the brush border of the small intestine, is responsible for overall glycemic control in the body. It hydrolyses the 1,4-linkage in the carbohydrates to form blood-absorbable monosaccharides that ultimately increase the blood glucose level. α-Glucosidase inhibitors (AGIs) can reduce hydrolytic activity and help to control type 2 diabetes. Aiming to achieve this, a novel series of 1-benzyl-3-((2-substitutedphenyl)amino)-2-oxoethyl)-2-(morpholinomethyl)-1H-benzimidazol-3-ium chloride was synthesized and screened for its α-glucosidase inhibitory potential. Compounds 5d, 5f, 5g, 5h and 5k exhibited better α-glucosidase inhibitions compared to the standard drug (acarbose IC50 = 58.8 ± 0.012 µM) with IC50 values of 15 ± 0.030, 19 ± 0.060, 25 ± 0.106, 21 ± 0.07 and 26 ± 0.035 µM, respectively. Furthermore, the molecular docking studies explored the mechanism of enzyme inhibitions by different 1,2,3-trisubstituted benzimidazolium salts via significant ligand–receptor interactions. 相似文献
5.
Shashank M. Patil Reshma Mary Martiz A. M. Satish Abdullah M. Shbeer Mohammed Ageel Mohammed Al-Ghorbani Lakshmi Ranganatha V Saravanan Parameswaran Ramith Ramu 《Molecules (Basel, Switzerland)》2022,27(12)
Coumarin derivatives are proven for their therapeutic uses in several human diseases and disorders such as inflammation, neurodegenerative disorders, cancer, fertility, and microbial infections. Coumarin derivatives and coumarin-based scaffolds gained renewed attention for treating diabetes mellitus. The current decade witnessed the inhibiting potential of coumarin derivatives and coumarin-based scaffolds against α-glucosidase and α-amylase for the management of postprandial hyperglycemia. Hyperglycemia is a condition where an excessive amount of glucose circulates in the bloodstream. It occurs when the body lacks enough insulin or is unable to correctly utilize it. With open-source and free in silico tools, we have investigated novel 80 coumarin derivatives for their inhibitory potential against α-glucosidase and α-amylase and identified a coumarin derivative, CD-59, as a potential dual inhibitor. The ligand-based 3D pharmacophore detection and search is utilized to discover diverse coumarin-like compounds and new chemical scaffolds for the dual inhibition of α-glucosidase and α-amylase. In this regard, four novel coumarin-like compounds from the ZINC database have been discovered as the potential dual inhibitors of α-glucosidase and α-amylase (ZINC02789441 and ZINC40949448 with scaffold thiophenyl chromene carboxamide, ZINC13496808 with triazino indol thio phenylacetamide, and ZINC09781623 with chromenyl thiazole). To summarize, we propose that a coumarin derivative, CD-59, and ZINC02789441 from the ZINC database will serve as potential lead molecules with dual inhibition activity against α-glucosidase and α-amylase, thereby discovering new drugs for the effective management of postprandial hyperglycemia. From the reported scaffold, the synthesis of several novel compounds can also be performed, which can be used for drug discovery. 相似文献
6.
Shoaib Khan Shahid Iqbal Mazloom Shah Wajid Rehman Rafaqat Hussain Liaqat Rasheed Hamad Alrbyawi Ayed A. Dera Mohammed Issa Alahmdi Rami Adel Pashameah Eman Alzahrani Abd-ElAziem Farouk 《Molecules (Basel, Switzerland)》2022,27(20)
A unique series of sulphonamide derivatives was attempted to be synthesized in this study using a new and effective method. All of the synthesized compounds were verified using several spectroscopic methods, including FTIR, 1H-NMR, 13C-NMR, and HREI-MS, and their binding interactions were studied using molecular docking. The enzymes urease and α-glucosidase were evaluated against each derivative (1–15). When compared to their respective standard drug such as acarbose and thiourea, almost all compounds were shown to have excellent activity. Among the screened series, analogs 5 (IC50 = 3.20 ± 0.40 and 2.10 ± 0.10 µM) and 6 (IC50 = 2.50 ± 0.40 and 5.30 ± 0.20 µM), emerged as potent molecules when compared to the standard drugs acarbose (IC50 = 8.24 ± 0.08 µM) and urease (IC50 = 7.80 ± 0.30). Moreover, an anti-microbial study also demonstrated that analogs 5 and 6 were found with minimum inhibitory concentrations (MICs) in the presence of standard drugs streptomycin and terinafine. 相似文献
7.
Yangrong Xu Hangjun Tang Yijie Xu Jialin Guo Xu Zhao Qingguo Meng Junhai Xiao 《Molecules (Basel, Switzerland)》2022,27(10)
Hydroxamate, as a zinc-binding group (ZBG), prevails in the design of histone deacetylase 6(HDAC6) inhibitors due to its remarkable zinc-chelating capability. However, hydroxamate-associated genotoxicity and mutagenicity have limited the widespread application of corresponding HDAC6 inhibitors in the treatment of human diseases. To avoid such side effects, researchers are searching for novel ZBGs that may be used for the synthesis of HDAC6 inhibitors. In this study, a series of stereoisomeric compounds were designed and synthesized to discover non-hydroxamate HDAC6 inhibitors using α-amino amide as zinc-ion-chelating groups, along with a pair of enantiomeric isomers with inverted L-shaped vertical structure as cap structures. The anti-proliferative activities were determined against HL-60, Hela, and RPMI 8226 cells, and 7a and its stereoisomer 13a exhibited excellent activities against Hela cells with IC50 = 0.31 µM and IC50 = 5.19 µM, respectively. Interestingly, there is a significant difference between the two stereoisomers. Moreover, an evaluation of cytotoxicity toward human normal liver cells HL-7702 indicated its safety for normal cells. X-ray single crystal diffraction was employed to increase insights into molecule structure and activities. It was found that the carbonyl of the amide bond is on the different side from the amino and pyridine nitrogen atoms. To identify possible protein targets to clarify the mechanism of action and biological activity of 7a, a small-scale virtual screen using reverse docking for HDAC isoforms (1–10) was performed and the results showed that HDAC6 was the best receptor for 7a, suggesting that HDAC6 may be a potential target for 7a. The interaction pattern analysis showed that the α-amino amide moiety of 7a coordinated with the zinc ion of HDAC6 in a bidentate chelate manner, which is similar to the chelation pattern of hydroxamic acid. Finally, the molecular dynamics simulation approaches were used to assess the docked complex’s conformational stability. In this work, we identified 7a as a potential HDAC6 inhibitor and provide some references for the discovery of non-hydroxamic acid HDAC6 inhibitors. 相似文献
8.
Imran Ahmad Khan Matloob Ahmad Usman Ali Ashfaq Sadia Sultan Magdi E.A. Zaki 《Molecules (Basel, Switzerland)》2021,26(16)
α-Glucosidase inhibitors (AGIs) are used as medicines for the treatment of diabetes mellitus. The α-Glucosidase enzyme is present in the small intestine and is responsible for the breakdown of carbohydrates into sugars. The process results in an increase in blood sugar levels. AGIs slow down the digestion of carbohydrates that is helpful in controlling the sugar levels in the blood after meals. Among heterocyclic compounds, benzimidazole moiety is recognized as a potent bioactive scaffold for its wide range of biologically active derivatives. The aim of this study is to explore the α-glucosidase inhibition ability of benzimidazolium salts. In this study, two novel series of benzimidazolium salts, i.e., 1-benzyl-3-{2-(substituted) amino-2-oxoethyl}-1H-benzo[d]imidazol-3-ium bromide 9a–m and 1-benzyl-3-{2-substituted) amino-2-oxoethyl}-2-methyl-1H-benzo[d] imidazol-3-ium bromide 10a–m were screened for their in vitro α-glucosidase inhibitory potential. These compounds were synthesized through a multistep procedure and were characterized by 1H-NMR, 13C-NMR, and EI-MS techniques. Compound 10d was identified as the potent α-glucosidase inhibitor among the series with an IC50 value of 14 ± 0.013 μM, which is 4-fold higher than the standard drug, acarbose. In addition, compounds 10a, 10e, 10h, 10g, 10k, 10l, and 10m also exhibited pronounced potential for α-glucosidase inhibition with IC50 value ranging from 15 ± 0.037 to 32.27 ± 0.050 µM when compared with the reference drug acarbose (IC50 = 58.8 ± 0.12 μM). A molecular docking study was performed to rationalize the binding interactions of potent inhibitors with the active site of the α-glucosidase enzyme. 相似文献
9.
Ekaterina A. Verochkina Nadezhda Victorovna Vchislo Igor B. Rozentsveig 《Molecules (Basel, Switzerland)》2021,26(14)
α-Functionalized α,β-unsaturated aldehydes is an important class of compounds, which are widely used in fine organic synthesis, biology, medicine and pharmacology, chemical industry, and agriculture. Some of the 2-substituted 2-alkenals are found to be the key metabolites in plant and animal cells. Therefore, the development of efficient methods for their synthesis attracts the attention of organic chemists. This review focusses on the recent advances in the synthesis of 2-functionally substituted 2-alkenals. The approaches to the preparation of α-alkyl α,β-unsaturated aldehydes are not included in this review. 相似文献
10.
Petros Giastas Athanasios Papakyriakou George Tsafaras Socrates J. Tzartos Marios Zouridakis 《Molecules (Basel, Switzerland)》2022,27(14)
The β3 subunit of nicotinic acetylcholine receptors (nAChRs) participates in heteropentameric assemblies with some α and other β neuronal subunits forming a plethora of various subtypes, differing in their electrophysiological and pharmacological properties. While β3 has for several years been considered an accessory subunit without direct participation in the formation of functional binding sites, recent electrophysiology data have disputed this notion and indicated the presence of a functional (+) side on the extracellular domain (ECD) of β3. In this study, we present the 2.4 Å resolution crystal structure of the monomeric β3 ECD, which revealed rather distinctive loop C features as compared to those of α nAChR subunits, leading to intramolecular stereochemical hindrance of the binding site cavity. Vigorous molecular dynamics simulations in the context of full length pentameric β3-containing nAChRs, while not excluding the possibility of a β3 (+) binding site, demonstrate that this site cannot efficiently accommodate the agonist nicotine. From the structural perspective, our results endorse the accessory rather than functional role of the β3 nAChR subunit, in accordance with earlier functional studies on β3-containing nAChRs. 相似文献
11.
Beiyun Shen Xinchen Shangguan Zhongping Yin Shaofu Wu Qingfeng Zhang Wenwen Peng Jingen Li Lu Zhang Jiguang Chen 《Molecules (Basel, Switzerland)》2021,26(17)
The inhibition of α-glucosidase is a clinical strategy for the treatment of type 2 diabetes mellitus (T2DM), and many natural plant ingredients have been reported to be effective in alleviating hyperglycemia by inhibiting α-glucosidase. In this study, the α-glucosidase inhibitory activity of fisetin extracted from Cotinus coggygria Scop. was evaluated in vitro. The results showed that fisetin exhibited strong inhibitory activity with an IC50 value of 4.099 × 10−4 mM. Enzyme kinetic analysis revealed that fisetin is a non-competitive inhibitor of α-glucosidase, with an inhibition constant value of 0.01065 ± 0.003255 mM. Moreover, fluorescence spectrometric measurements indicated the presence of only one binding site between fisetin and α-glucosidase, with a binding constant (lgKa) of 5.896 L·mol−1. Further molecular docking studies were performed to evaluate the interaction of fisetin with several residues close to the inactive site of α-glucosidase. These studies showed that the structure of the complex was maintained by Pi-Sigma and Pi-Pi stacked interactions. These findings illustrate that fisetin extracted from Cotinus coggygria Scop. is a promising therapeutic agent for the treatment of T2DM. 相似文献
12.
Haibo Wang Senling Tang Guoqing Zhang Yang Pan Wei Jiao Huawu Shao 《Molecules (Basel, Switzerland)》2022,27(17)
A series of N-substituted iminosugar C-glycosides were synthesized and tested for α-glucosidase inhibition. The results suggested that 6e is a promising and potent α-glucosidase inhibitor. Enzymatic kinetic assays indicated that compound 6e may be classified as an uncompetitive inhibitor. The study of structure-activity relationships of those iminosugars provided a starting point for the discovery of new α-glucosidase inhibitors. 相似文献
13.
Kashif Rafiq Najeeb Ur Rehman Sobia Ahsan Halim Majid Khan Ajmal Khan Ahmed Al-Harrasi 《Molecules (Basel, Switzerland)》2022,27(3)
Carbonic anhydrase-II (CA-II) is strongly related with gastric, glaucoma, tumors, malignant brain, renal and pancreatic carcinomas and is mainly involved in the regulation of the bicarbonate concentration in the eyes. With an aim to develop novel heterocyclic hybrids as potent enzyme inhibitors, we synthesized a series of twelve novel 3-phenyl-β-alanine 1,3,4-oxadiazole hybrids (4a–l), characterized by 1H- and 13C-NMR with the support of HRESIMS, and evaluated for their inhibitory activity against CA-II. The CA-II inhibition results clearly indicated that the 3-phenyl-β-alanine 1,3,4-oxadiazole derivatives 4a–l exhibited selective inhibition against CA-II. All the compounds (except 4d) exhibited good to moderate CA-II inhibitory activities with IC50 value in range of 12.1 to 53.6 µM. Among all the compounds, 4a (12.1 ± 0.86 µM), 4c (13.8 ± 0.64 µM), 4b (19.1 ± 0.88 µM) and 4h (20.7 ± 1.13 µM) are the most active hybrids against carbonic CA-II. Moreover, molecular docking was performed to understand the putative binding mode of the active compounds. The docking results indicates that these compounds block the biological activity of CA-II by nicely fitting at the entrance of the active site of CA-II. These compounds specifically mediating hydrogen bonding with Thr199, Thr200, Gln92 of CA-II. 相似文献
14.
Xiangcong Wang Moxuan Zhang Ranran Zhu Zhongshan Wu Fanhong Wu Zhonghua Wang Yanyan Yu 《Molecules (Basel, Switzerland)》2022,27(2)
PI3Kα is one of the potential targets for novel anticancer drugs. In this study, a series of 2-difluoromethylbenzimidazole derivatives were studied based on the combination of molecular modeling techniques 3D-QSAR, molecular docking, and molecular dynamics. The results showed that the best comparative molecular field analysis (CoMFA) model had q2 = 0.797 and r2 = 0.996 and the best comparative molecular similarity indices analysis (CoMSIA) model had q2 = 0.567 and r2 = 0.960. It was indicated that these 3D-QSAR models have good verification and excellent prediction capabilities. The binding mode of the compound 29 and 4YKN was explored using molecular docking and a molecular dynamics simulation. Ultimately, five new PI3Kα inhibitors were designed and screened by these models. Then, two of them (86, 87) were selected to be synthesized and biologically evaluated, with a satisfying result (22.8 nM for 86 and 33.6 nM for 87). 相似文献
15.
Hypoxia-inducible factor-1α (HIF-1α) is widely distributed in human cells, and it can form different signaling pathways with various upstream and downstream proteins, mediate hypoxia signals, regulate cells to produce a series of compensatory responses to hypoxia, and play an important role in the physiological and pathological processes of the body, so it is a focus of biomedical research. In recent years, various types of HIF-1α inhibitors have been designed and synthesized and are expected to become a new class of drugs for the treatment of diseases such as tumors, leukemia, diabetes, and ischemic diseases. This article mainly reviews the structure and functional regulation of HIF-1α, the modes of action of HIF-1α inhibitors, and the application of HIF-1α inhibitors during the treatment of diseases. 相似文献
16.
α-Galacto-oligosaccharides (α-GOSs) have great functions as prebiotics and therapeutics. This work established the method of batch synthesis of α-GOSs by immobilized α-galactosidase for the first time, laying a foundation for industrial applications in the future. The α-galactosidase from Aspergillus niger L63 was immobilized as cross-linked enzyme aggregates (CLEAs) nano-biocatalyst through enzyme precipitating and cross-linking steps without using carriers. Among the tested agents, the ammonium sulfate showed high precipitation efficacy and induced regular structures of α-galactosidase CLEAs (Aga-CLEAs) that had been analyzed by scanning electron microscopy and Fourier-transform infrared spectroscopy. Through optimization by response surface methodology, the ammonium sulfate-induced Aga-CLEAs achieved a high activity recovery of around 90% at 0.55 U/mL of enzymes and 36.43 mM glutaraldehyde with cross-linking for 1.71 h. Aga-CLEAs showed increased thermal stability and organic solvent tolerance. The storage ability was also improved since it maintained 74.5% activity after storing at 4 °C for three months, significantly higher than that of the free enzyme (21.6%). Moreover, Aga-CLEAs exhibited excellent reusability in the α-GOSs synthesis from galactose, retaining above 66% of enzyme activity after 10 batch reactions, with product yields all above 30%. 相似文献
17.
Svetlana I. Dorovskikh Denis E. Tryakhov Darya D. Klyamer Alexander S. Sukhikh Irina V. Mirzaeva Natalia B. Morozova Tamara V. Basova 《Molecules (Basel, Switzerland)》2022,27(7)
To search for new suitable Pd precursors for MOCVD/ALD processes, the extended series of fluorinated palladium complexes [Pd(CH3CXCHCO(R))2] with β-diketone [tfa−1,1,1-trifluoro-2,4-pentanedionato (1); pfpa−5,5,6,6,6-pentafluoro-2,4-hexanedionato (3); hfba−5,5,6,6,7,7,7-heptafluoro-2,4-heptanedionato (5)] and β-iminoketone [i-tfa−1,1,1-trifluoro-2-imino-4-pentanonato (2); i-pfpa−5,5,6,6,6-pentafluoro-2-imino-4-hexanonato (4); i-hfba-5,5,6,6,7,7,7-heptafluoro-2-imino-4-heptanonato (6)] ligands were synthesized with 70–80% yields and characterized by a set of experimental (SXRD, XRD, IR, NMR spectroscopy, TG) and theoretical (DFT, Hirshfeld surface analysis) methods. Solutions of Pd β-diketonates contained both cis and trans isomers, while only trans isomers were detected in the solutions of Pd β-iminoketonates. The molecules 2–6 and new polymorphs of complexes 3 and 5 were arranged preferentially in stacks, and the distance between molecules in the stack generally increased with elongation of the fluorine chain in ligands. The H…F contacts were the main ones involved in the formation of packages of molecules 1–2, and C…F, F…F, NH…F contacts appeared in the structures of complexes 4–6. The stability of complexes and their polymorphs in the crystal phases were estimated from DFT calculations. The TG data showed that the volatility differences between Pd β-iminoketonates and Pd β-diketonates were minimized with the elongation of the fluorine chain in the ligands. 相似文献
18.
Yang Liu Xue Zhou Dan Zhou Yongxing Jian Jingfu Jia Fahuan Ge 《Molecules (Basel, Switzerland)》2022,27(18)
Diabetes is a chronic metabolic disease, whereas α-glucosidases are key enzymes involved in the metabolism of starch and glycogen. There is a long history of the use of mulberry leaf (the leaf of Morus alba) as an antidiabetic herb in China, and we found that chalcomoracin, one of the specific Diels–Alder adducts in mulberry leaf, had prominent α-glucosidase inhibitory activity and has the potential to be a substitute for current hypoglycemic drugs such as acarbose, which have severe gastrointestinal side effects. In this study, chalcomoracin was effectively isolated from mulberry leaves, and its α-glucosidase inhibition was studied via enzymatic kinetics, isothermal titration (ITC) and molecular docking. The results showed that chalcomoracin inhibited α-glucosidase through both competitive and non-competitive manners, and its inhibitory activity was stronger than that of 1-doxymycin (1-DNJ) but slightly weaker than that of acarbose. ITC analysis revealed that the combination of chalcomoracin and α-glucosidase was an entropy-driven spontaneous reaction, and the molecular docking results also verified this conclusion. During the binding process, chalcomoracin went into the “pocket” of α-glucosidase via hydrophobic interactions, and it is linked with residues Val544, Asp95, Ala93, Gly119, Arg275 and Pro287 by hydrogen bonds. This study provided a potential compound for the prevention and treatment of diabetes and a theoretical basis for the discovery of novel candidates for α-glycosidase inhibitors. 相似文献
19.
Arpita Dey Ran Chen Feng Li Subhamita Maitra Jean-Francois Hernandez Guo-Chun Zhou Bruno Vincent 《Molecules (Basel, Switzerland)》2021,26(24)
Alzheimer’s disease (AD) is a devastating neurodegenerative disorder, one of the main characteristics of which is the abnormal accumulation of amyloid peptide (Aβ) in the brain. Whereas β-secretase supports Aβ formation along the amyloidogenic processing of the β-amyloid precursor protein (βAPP), α-secretase counterbalances this pathway by both preventing Aβ production and triggering the release of the neuroprotective sAPPα metabolite. Therefore, stimulating α-secretase and/or inhibiting β-secretase can be considered a promising anti-AD therapeutic track. In this context, we tested andrographolide, a labdane diterpene derived from the plant Andrographis paniculata, as well as 24 synthesized derivatives, for their ability to induce sAPPα production in cultured SH-SY5Y human neuroblastoma cells. Following several rounds of screening, we identified three hits that were subjected to full characterization. Interestingly, andrographolide (8,17-olefinic) and its close derivative 14α-(5′,7′-dichloro-8′-quinolyloxy)-3,19-acetonylidene (compound 9) behave as moderate α-secretase activators, while 14α-(2′-methyl-5′,7′-dichloro-8′-quinolyloxy)-8,9-olefinic compounds 31 (3,19-acetonylidene) and 37 (3,19-diol), whose two structures are quite similar although distant from that of andrographolide and 9, stand as β-secretase inhibitors. Importantly, these results were confirmed in human HEK293 cells and these compounds do not trigger toxicity in either cell line. Altogether, these findings may represent an encouraging starting point for the future development of andrographolide-based compounds aimed at both activating α-secretase and inhibiting β-secretase that could prove useful in our quest for the therapeutic treatment of AD. 相似文献
20.
Danielle M. Williams David C. Thorn Christopher M. Dobson Sarah Meehan Sophie E. Jackson Joanna M. Woodcock John A. Carver 《Molecules (Basel, Switzerland)》2021,26(20)
14-3-3 proteins are abundant, intramolecular proteins that play a pivotal role in cellular signal transduction by interacting with phosphorylated ligands. In addition, they are molecular chaperones that prevent protein unfolding and aggregation under cellular stress conditions in a similar manner to the unrelated small heat-shock proteins. In vivo, amyloid β (Aβ) and α-synuclein (α-syn) form amyloid fibrils in Alzheimer’s and Parkinson’s diseases, respectively, a process that is intimately linked to the diseases’ progression. The 14-3-3ζ isoform potently inhibited in vitro fibril formation of the 40-amino acid form of Aβ (Aβ40) but had little effect on α-syn aggregation. Solution-phase NMR spectroscopy of 15N-labeled Aβ40 and A53T α-syn determined that unlabeled 14-3-3ζ interacted preferentially with hydrophobic regions of Aβ40 (L11-H21 and G29-V40) and α-syn (V3-K10 and V40-K60). In both proteins, these regions adopt β-strands within the core of the amyloid fibrils prepared in vitro as well as those isolated from the inclusions of diseased individuals. The interaction with 14-3-3ζ is transient and occurs at the early stages of the fibrillar aggregation pathway to maintain the native, monomeric, and unfolded structure of Aβ40 and α-syn. The N-terminal regions of α-syn interacting with 14-3-3ζ correspond with those that interact with other molecular chaperones as monitored by in-cell NMR spectroscopy. 相似文献