首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
The paper studies, with the help of HPLC-DAD-MS/MS technique, the hydrolytic and photoinduced degradation processes that take place in aqueous solutions of tribenuron methyl, both when preserved in the dark and when undergoing solar box irradiation under conditions that simulate sun light. The results indicate that the degradation products formed by hydrolysis alone and by photoirradiation are the same, but kinetics of the hydrolysis reaction is much slower. The degradation products are identified as 2-methoxy-4-methylamino-6-methyl-1,3,5-triazine (P1), methyl 2-aminosulfonylbenzoate (P2), and saccharin (P3) and quantified. Ecotoxicological biotests performed on 0.1 microg L(-1) photoirradiated solutions of the herbicide give a border line toxicity situation comparable to that of the precursor and indicate that the herbicide is characterized by low persistence in the environment, as required. Its degradation, however, does not lead to mineralization but to the formation of products of comparable toxicity. To evaluate the matrix effects, the photodegradation of the herbicide is also studied in the presence of rice paddy waters: the process is slower than in ultrapure water but leads to the same products. Experiments performed for comparison by irradiating ultrapure water solutions with UV lamp (254 nm) show that the degradation process is not only faster with respect to sunlight, but gives a different pathway, without in anyway leading to mineralization.  相似文献   

2.
Zinc oxide-ternary heterostructure Mn3O4/ZnO/Eu2O3 nanocomposites were successfully prepared via waste curd as fuel by a facile one-pot combustion procedure. The fabricated heterostructures were characterized utilizing XRD, UV–Visible, FT-IR, FE-SEM, HRTEM and EDX analysis. The photocatalytic degradation efficacy of the synthesized ternary nanocomposite was evaluated utilizing model organic pollutants of methylene blue (MB) and methyl orange (MO) in water as examples of cationic dyes and anionic dyes, respectively, under natural solar irradiation. The effect of various experimental factors, viz. the effect of a light source, catalyst dosage, irradiation time, pH of dye solution and dye concentration on the photodegradation activity, was systematically studied. The ternary Mn3O4/ZnO/Eu2O3 photocatalyst exhibited excellent MB and MO degradation activity of 98% and 96%, respectively, at 150 min under natural sunlight irradiation. Experiments further conclude that the fabricated nanocomposite exhibits pH-dependent photocatalytic efficacy, and for best results, concentrations of dye and catalysts have to be maintained in a specific range. The prepared photocatalysts are exemplary and could be employed for wastewater handling and several ecological applications.  相似文献   

3.
Bi2FeVO7 was prepared by a solid-state reaction technique for the first time and the structural and photocatalytic properties of Bi2FeVO7 were studied. The results shows that this compound crystallized in the tetragonal crystal system with space group I4/mmm. Moreover, the band gap of Bi2FeVO7 was estimated to be about 2.22(6) eV. For the photocatalytic water splitting reaction, H2 or O2 evolution was observed from pure water with Bi2FeVO7 as the photocatalyst by ultraviolet light irradiation. Degradation of aqueous methylene blue (MB) dye by photocatalytic way over this compound was further studied under visible light irradiation. Bi2FeVO7 shows higher catalytic activity compared to TiO2 (P-25) for MB photocatalytic degradation under visible light irradiation. Complete removal of aqueous MB was realized after visible light irradiation for 170 min with Bi2FeVO7 as the photocatalyst. The reduction of the total organic carbon (TOC) and the formation of inorganic products, SO 4 2− and NO 3 revealed the continuous mineralization of aqueous MB during the photocatalytic course.  相似文献   

4.
We have studied the photocatalytic transformation of atenolol, 4-[2-hydroxy-3-[(1-methyl)amino]propoxyl]benzeneacetamide, a cardioselective beta-blocking agent used to treat cardiac arrhythmias and hypertension, under simulated solar irradiation using titanium dioxide as photocatalyst. The investigation involved monitoring drug decomposition, identifying intermediate compounds, assessing mineralization, and evaluating toxicity. High-performance liquid chromatography (HPLC) coupled to high-resolution mass spectrometry (HRMS) via an electrospray ionization (ESI) interface was a powerful tool for the identification and measurement of the degradation products; 23 main species were identified. Intermediates were characterized through their chromatographic behavior and evolution kinetics, coupled with accurate mass information. Through the full analysis of MS and MS(n) spectra and a comparison with parent drug fragmentation pathways, the diverse isomers were characterized. Neither atenolol nor the intermediates formed exhibit acute toxicity. All intermediates are easily degraded and no compound identified could withstand 2 h irradiation. Photomineralization of the substrate in terms of carbon mineralization and nitrogen release was rapid and, within 4 h of irradiation, organic nitrogen and carbon were completely mineralized.  相似文献   

5.
Surface water contamination by various dyes and pigments is a global problem caused by rapid industry, particularly textile/dyeing. Bangladesh's export-oriented textile sector has exploded in recent decades, polluting local waterways significantly. In this study, nano-ZnO were prepared using surfactant-assisted sol–gel, hydrothermal and thermal methods. SEM, XRD, reflectance spectrophotometer, EDS and adsorption tests were used to characterize the synthesized nano-ZnO. BET isotherms were used to determine the surface area, pore volume, and pore size of the as-prepared nano-ZnO. The mixed surfactant assisted-sol gel method produced nanorod-ZnO, whereas the hydrothermal and/or thermal methods yielded clusters of needles ZnO, as proven by SEM images. XRD data revealed that the synthesized nanorod-ZnO had a mainly wurtzite crystalline structure and their size was estimated using the Scherrer equation to be about 23.90 nm. EDS spectra confirmed the synthesis of pure nanorod-ZnO. Using a UV–visible reflectance spectrophotometer, the band gap energy of the as-prepared nanorod-ZnO was found to be 3.35 eV. According to BET isotherms, the BET and Langmuir surface areas were 4 and 5.4 m2/g, respectively. Prior to analyzing photodegradation, the RB was adsorbing in the presence of various doses of the nanorod-ZnO in the dark, but no adsorption was observed. The photocatalytic activities of the synthesized nano-ZnO were compared to TiO2 (anatase) for the degradation of RB in an aqueous system under solar light, UV, fluorescence, and tungsten filament light irradiation. Nanorod-ZnO showed exceptional photocatalytic activity in degrading RB in an aqueous solution under solar light irradiation. The results suggest that 0.01 g/50 mL nanorod-ZnO with a solution pH of 7.8 is the best combination for complete degradation of 2.00 × 10-5 M RB under solar light irradiation. When nano-ZnO was exposed to light, the inhibiting effect of ethanol and/or tert-butanol on the degradation of RB confirmed the formation of mostly hydroxyl free radicals. The synthesized nanorod-ZnO shown substantial photocatalytic activity in the removal of pollutants from industrial effluents and contaminated river water under solar light irradiation. A mechanism of excellent photocatalytic activity of the nanorod-ZnO is discussed.  相似文献   

6.
Even though it is a potential visible-light responsive photocatalyst, the application of BiFeO3 (BFO) is restricted because of the presence of residual impurities in the synthesis process. To alleviate this problem, in this work, BiFeO3 was synthesized by the sonochemical method and calcined at different temperatures. Morphologies and phases of the samples were evaluated by using powder X-ray diffraction (XRD), transmission electron microscopy (TEM), and scanning electron microscopy (SEM) techniques. UV–Vis diffuse reflectance spectroscopy (UV–Vis DRS) was used to analyze the absorption properties. The photocatalytic activities of the samples were evaluated via the photocatalytic degradation of rhodamine-B (RhB) aqueous solution under simulated solar light irradiation. The results revealed that the phase transformation from amorphous to crystalline phase has occurred during heat treatment. The formation of pure BFO occurred only at about 600 °C, indicating the importance of heat treatment during the synthesis process. On the other hand, the decolorization of RhB solution was completed by pure BFO photocatalyst within 1 h of simulated solar light irradiation.  相似文献   

7.
In this work, the Er3+: YAlO3/Co- and Fe-doped ZnO coated composites were prepared by the sol-gel method. Then, they were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy dispersive X-ray spectroscopy (EDX). Photo-degradation of azo fuchsine (AF) as a model dye under solar light irradiation was studied to evaluate the photocatalytic activity of the Er3+: YAlO3/Co- and Fe-doped ZnO coated composites. It was found that the photocatalytic activity of Co- and Fe-doped ZnO composites can be obviously enhanced by upconversion luminescence agent (Er3+: YAlO3). Besides, the photocatalytic activity of Er3+: YAlO3/Fe-doped ZnO is better than that of Er3+: YAlO3/Co-doped ZnO. The influence of experiment conditions, such as the concentration of Er3+: YAlO3, heat-treatment temperature and time on the photocatalytic activity of the Er3+: YAlO3/Co- and Fe-doped ZnO coated composites was studied. In addition, the effects of solar light irradiation time, dye initial concentration, Er3+: YAlO3/Co- and Fe-doped ZnO amount on the photocatalytic degradation of azo fuchsine in aqueous solution were investigated in detail. Simultaneously, some other organic dyes, such as Methyl Orange (MO), Rhodamine B (RM-B), Acid Red B (AR-B), Congo Red (CR), and Methyl Blue (MB) were also studied. The possible excitation principle of Er3+: YAlO3/Co- and Fe-doped ZnO coated composites under solar light irradiation and the photocatalytic degradation mechanism of organic dyes were discussed.  相似文献   

8.
The paper deals with the photocatalytic transformation of two antibacterial agents, ofloxacin and ciprofloxacin, under simulated solar irradiation using titanium dioxide as photocatalyst. The investigation involved monitoring decomposition of the drugs, identifying intermediate compounds, assessing mineralization, and evaluating the toxicity of drug derivatives. High-resolution mass spectrometry was employed to assess evolution of the photocatalyzed process over time. Respectively 15 and 8 main species were identified after transformation of ofloxacin and ciprofloxacin. Through the full analysis of MS and MSn spectra and a comparison with parent drug fragmentation pathways, the different isomers were characterized. In the ofloxacin molecule, the initial transformation attacks are confined to the piperazine moiety and to the methyl groups, while the fluoroquinolone core is unmodified. Conversely, ciprofloxacin degradation involves two parts of the molecule: the piperazinic moiety and the quinolone moiety. All these intermediates are easily degraded and by 4 h mineralization is complete. Toxicity assays using Vibrio fischeri prove that neither ciprofloxacin nor its intermediates exhibit acute toxicity. In ofloxacin the secondary degradation products exhibit toxicity; a correlation exists between the evolution of the intermediate compounds and the toxicity connected to them.  相似文献   

9.
Benzophenone (BP) type UV filters are common environmental contaminants that are posing a growing health concern due to their increasing presence in water. Different studies have evidenced the presence of benzophenones (BP, BP-1, BP-2, BP-3, BP-4, BP-9, HPB) in several environmental matrices, indicating that conventional technologies of water treatment are not able to remove them. It has also been reported that these compounds could be associated with endocrine-disrupting activities, genotoxicity, and reproductive toxicity. This review focuses on the degradation kinetics and mechanisms of benzophenone-type UV filters and their degradation products (DPs) under UV and solar irradiation and in UV-based advanced oxidation processes (AOPs) such as UV/H2O2, UV/persulfate, and the Fenton process. The effects of various operating parameters, such as UV irradiation including initial concentrations of H2O2, persulfate, and Fe2+, on the degradation of tested benzophenones from aqueous matrices, and conditions that allow higher degradation rates to be achieved are presented. Application of nanoparticles such as TiO2, PbO/TiO2, and Sb2O3/TiO2 for the photocatalytic degradation of benzophenone-type UV filters was included in this review.  相似文献   

10.
栾景飞  谭文成 《无机化学学报》2018,34(11):1950-1965
首次采用固相反应法制备了新型光催化剂Sm2FeSbO7,有效地降解了水中有机污染物。利用X射线衍射、扫描电镜、X射线光电子能谱、傅里叶变换红外光谱、透射电子显微镜和紫外-可见光谱仪对Sm2FeSbO7的结构和光催化性能进行了表征。Sm2FeSbO7为烧绿石型结构,立方晶系和空间群Fd3m结晶。Sm2FeSbO7的晶格参数a为1.035 434 nm。Sm2FeSbO7的带隙经估算为2.46 eV。用Sm2FeSbO7作为光催化剂在可见光照射下降解靛蓝胭脂红,并与氮掺杂TiO2对比。结果表明,与掺氮TiO2相比,Sm2FeSbO7在可见光照射下光催化降解靛蓝胭脂红显示出较高的光催化活性。总有机碳的减少,无机产物的逐渐形成,SO42-和NO3-以及CO2的演变揭示了在光催化过程中靛蓝胭脂红的连续矿化。检测了一些来自光催化降解靛蓝胭脂红的中间体,如邻硝基苯甲酸和邻硝基苯甲醛,并获得了可能的靛蓝胭脂红光催化降解路径。  相似文献   

11.
The photo-induced transformation in aqueous solution of hexaconazole and dimethomorph over irradiated titanium dioxide was studied. The investigation involved monitoring pesticides decomposition, identifying intermediate compounds, assessing mineralization, and evaluating toxicity of pesticides derivatives. HPLC/UV and HPLC/MS were used to follow the disappearance of the initial pesticides and the formation of intermediate products, while the acute toxicity was evaluated by using the Vibrio fischeri luminescent bacteria assay.Hexaconazole photocatalytic transformation proceeds through the formation of highly persistent compounds. The formation of cyanuric acid, a non-toxic compound refractory to photocatalytic treatment, was recognized. Conversely, the toxicity assays prove that neither hexaconazole nor its intermediates exhibit acute toxicity.Dimethomorph under photocatalytic treatment is completely mineralized within 14 h of irradiation. However, its transformation proceeds through the formation of toxic intermediates. A correlation exists between the evolution of the intermediate compounds and the toxicity profile, as the highest toxicity is measured when the intermediates with lower EC50 (hydroquinone and 4-chlorophenol) are formed.  相似文献   

12.
Water pollution due to industrial effluents from industries which utilize dyes in the manufacturing of their products has serious implications on aquatic lives and the general environment. Thus, there is need for the removal of dyes from wastewater before being discharged into the environment. In this study, a nanocomposite consisting of silver, silver oxide (Ag2O), zinc oxide (ZnO) and graphene oxide (GO) was synthesized, characterized and photocatalytically applied in the degradation (and possibly mineralization) of organic pollutants in water treatment process. The Ag–Ag2O–ZnO nanostructure was synthesized by a co-precipitation method and calcined at 400 °C. It was functionalized using 3-aminopropyl triethoxysilane and further anchored on carboxylated graphene oxide via the formation of an amide bond to give the Ag–Ag2O–ZnO/GO nanocomposite. The prepared nanocomposite was characterized by UV–Vis diffuse reflectance spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electronic microscopy (SEM), energy dispersive X-ray spectrometry (EDX), Fourier transformed infrared spectroscopy (FTIR), and Raman spectroscopy. The applicability of Ag–Ag2O–ZnO/GO nanocomposite as a photocatalyst was investigated in the photocatalytic degradation of acid blue 74 dye under visible light irradiation in synthetic wastewater containing the dye. The results indicated that Ag–Ag2O–ZnO/GO nanocomposite has a higher photocatalytic activity (90% removal) compared to Ag–Ag2O–ZnO (85% removal) and ZnO (75% removal) respectively and thus lends itself to application in water treatment, where the removal of organics is very important.  相似文献   

13.
A novel polyaniline/Bi(2)SnTiO(7 )composite polymer was synthesized by chemical oxidation in-situ polymerization method and sol-gel method for the first time. The structural properties of novel polyaniline/Bi(2)SnTiO(7) have been characterized by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy and X-ray spectrometry. The lattice parameter of Bi(2)SnTiO(7) was found to be a = 10.52582(8) ?. The photocatalytic degradation of methylene blue was realized under visible light irradiation with the novel polyaniline/Bi(2)SnTiO(7) as catalyst. The results showed that novel polyaniline/Bi(2)SnTiO(7 )possessed higher catalytic activity compared with Bi(2)InTaO(7) or pure TiO(2) or N-doped TiO(2) for photocatalytic degradation of methylene blue under visible light irradiation. The photocatalytic degradation of methylene blue with the novel polyaniline/Bi(2)SnTiO(7) or N-doped TiO(2) as catalyst followed first-order reaction kinetics, and the first-order rate constant was 0.01504 or 0.00333 min(-1). After visible light irradiation for 220 minutes with novel polyaniline/Bi(2)SnTiO(7 )as catalyst, complete removal and mineralization of methylene blue was observed. The reduction of the total organic carbon, the formation of inorganic products, SO(4)2- and NO(3-), and the evolution of CO(2) revealed the continuous mineralization of methylene blue during the photocatalytic process. The possible photocatalytic degradation pathway of methylene blue was obtained under visible light irradiation.  相似文献   

14.
采用电化学方法制备Ag@AgI/Ni表面等离子体薄膜催化剂,使用扫描电镜(SEM),X射线衍射(XRD)和紫外-可见漫反射光谱(UV-Vis DRS)对薄膜的表面形貌、晶体结构、光谱特性以及能带结构进行分析表征,在模拟太阳光照射下,把罗丹明B作为模拟污染物对薄膜的光催化活性与稳定性进行评价,采用向反应体系中加入活性物种捕获剂的方法对薄膜光催化机理进行探究。结果表明:最佳工艺下制备的Ag@AgI/Ni薄膜表面是由附着少量Ag粒子的AgI纳米晶构成。薄膜具有显著的表面等离子共振作用、优异的光催化活性和突出的光催化稳定性。光催化反应60 min,薄膜对罗丹明B的降解率(81.1%)是AgI/Ni薄膜的1.35倍,是TiO2(P25)/ITO薄膜的1.61倍。在薄膜光催化活性基本保持不变的前提下可循环使用5次。薄膜表面纳米Ag的等离子共振对光阴极反应的活化是光催化性能提高的重要原因。提出了薄膜光催化降解罗丹明B的反应机理。  相似文献   

15.
Fe–TiO2–SiC composite with photocatalytic activity has been synthesized by a low cost sonochemical process in the presence of citric acid. The addition of citric acid during the sonochemical process allows the formation of a photocatalytic coating of Fe–TiO2 onto silicon carbide. Experimental characterization results indicate that the composite was formed over all the surface of the silicon carbide (SiC) with an anatase crystalline TiO2 phase with iron incorporation. The incorporation of iron narrows the band gap of TiO2 which allow the absorbtion of light with a large wavelength. The obtained Fe–TiO2–SiC composite exhibits good enhanced photocatalytic activity for the degradation of rhodamine B under solar simulator irradiation in comparison with the commercial TiO2–P25.  相似文献   

16.
采用电化学方法制备Ag@AgI/Ni表面等离子体薄膜催化剂,使用扫描电镜(SEM),X射线衍射(XRD)和紫外-可见漫反射光谱(UV-Vis DRS)对薄膜的表面形貌、晶体结构、光谱特性以及能带结构进行分析表征,在模拟太阳光照射下,把罗丹明B作为模拟污染物对薄膜的光催化活性与稳定性进行评价,采用向反应体系中加入活性物种捕获剂的方法对薄膜光催化机理进行探究。结果表明:最佳工艺下制备的Ag@AgI/Ni薄膜表面是由附着少量Ag粒子的AgI纳米晶构成。薄膜具有显著的表面等离子共振作用、优异的光催化活性和突出的光催化稳定性。光催化反应60 min,薄膜对罗丹明B的降解率(81.1%)是AgI/Ni薄膜的1.35倍,是TiO_2(P25)/ITO薄膜的1.61倍。在薄膜光催化活性基本保持不变的前提下可循环使用5次。薄膜表面纳米Ag的等离子共振对光阴极反应的活化是光催化性能提高的重要原因。提出了薄膜光催化降解罗丹明B的反应机理。  相似文献   

17.
Organic pesticides are major sources of soil pollution in agricultural lands. Most of these pesticides are persistent and tend to bio accumulate in humans upon consumption of contaminated plants. In this study, we investigate different natural soil samples that were collected from agricultural lands. The samples revealed the presence of 18 pesticides that belong to four different groups including organochlorines (OCP), organophosphorus (OPP), carbamates (Carb), and pyrethroids (Pyrth). The photocatalytic degradation of the five most abundant pesticides was studied in the presence and absence of 1% TiO2 or ZnO photocatalysts under UV irradiation at a wavelength of 306 nm. The five abundant pesticides were Atrazine (OCP), Chlorpyrifos methyl (OPP), Dimethoate (OPP), Heptachlor (OCP), and Methomyl (Carb). The results showed that photolysis of all pesticides was complete under UV radiation for irradiation times between 64–100 h. However, both photocatalysts enhanced photocatalytic degradation of the pesticides in comparison with photolysis. The pesticides were photocatalytically degraded completely within 20–24 h of irradiation. The TiO2 photocatalyst showed higher activity compared to ZnO. The organochlorine heptachlor, which is very toxic and persistent, was completely degraded within 30 h using TiO2 photocatalyst for the first time in soil. The mechanism of photocatalytic degradation of the pesticides was explained and the effects of different factors on the degradation process in the soil were discussed.  相似文献   

18.
The photocatalytic activity of Bismuth‐codoped Sr4Al14O25: Eu2+, Dy3+ persistent phosphors is studied by monitoring the degradation of the blue methylene dye UV light irradiation. Powder phosphors are obtained by a combustion synthesis method and a postannealing process in reductive atmosphere. The XRD patterns show a single orthorhombic phase Sr4Al14O25: Eu2+, Dy3+, Bi3+ phosphors even at high Bismuth dopant concentrations of 12 mol%, suggesting that Bi ions are well incorporated into the host lattice. SEM micrographs show irregular micrograins with sizes in the range of 0.5–20 μm. The samples present an intense greenish‐blue fluorescence and persistent emissions at 495 nm, attributed to the 5d–4f allowed transitions of Eu2+. The fluorescence decreases as Bi concentration increases; that suggest bismuth‐induced traps formation that in turn quench the luminescence. The photocatalytic evaluation of the powders was studied under both 365 nm UV and solar irradiations. Sample with 12 mol% of Bi presented the best MB degradation activity; 310 min of solar irradiation allow 100% MB degradation, whereas only 62.49% MB degradation is achieved under UV irradiation. Our results suggest that codoping the persistent phosphors with Bi3+ can be an alternative to enhance their photocatalytic activity.  相似文献   

19.
The study investigates the natural photodegradation pathway of mono-chloroanilines in river waters, with the aim to identify the predominant photoproducts formed. At this purpose a new sensitive on-line SPE HPLC–MS/MS method has been developed with LOQ values equal or lower than the legal threshold concentration levels allowed for mono-chloroanilines in waters. The degradation processes of o-, m- and p-chloroaniline have been investigated subjecting their solutions, prepared both in ultrapure and in river water, to sun light irradiation simulated by a solar box system. The SPE HPLC–MS/MS methodology allowed to evaluate the degradation kinetics, to identify the predominant photodegradation products and to propose the chemical structures. Two photoproducts (aniline and 3-aminophenol), for which standards are available, have also been quantified.  相似文献   

20.
Three TiO2 loaded composites, TiO2/kaolin, TiO2/diatomite, and TiO2/zeolite, were prepared in order to improve the solar-light photocatalytic activity of TiO2. The results showed that the photocatalytic activity could obviously be enhanced by loading appropriate amount of inorganic mineral materials. Meanwhile, TiO2 content, heat-treatment temperature and heat-treatment time on the photocatalytic activity were reviewed. Otherwise, the effect of solar light irradiation time and dye concentration on the photocatalytic degradation of Acid Red B was investigated. Furthermore, the degradation mechanism and adsorption process were also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号