首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
聚合物纳米粒子用于给药载体   总被引:10,自引:0,他引:10  
聚合物纳米粒子用于给药载体具有广阔的前景,本文按聚合物纳米粒子的主要制备方法(单体聚合法,聚合物后分散法和两亲性聚合物自组装法等)综述了它近十年来在药物靶向输送上的应用研究进展。  相似文献   

2.
In view of technological significance of molecular imprinting polymers in drug delivery, the present study is an attempt to synthesize 2‐hydroxyethylmetacrylate (HEMA) and acrylic acid (AAc) based hydrogels imprinted with model drug glucose. Both molecular imprinted polymers (MIPs) and non‐imprinted polymers (NIPs) have been synthesized and have been used to study their binding affinity, swelling and in vitro release dynamics of the drug. It has been observed from this study that the template formed in MIPs has increased the absorption percentage of the drug and has improved the release profile of the drug from these polymers.  相似文献   

3.
Carriers that can afford tunable physical and structural changes are envisioned to address critical issues in controlled drug delivery applications. Herein, photo‐responsive conjugated polymer nanoparticles (CPNs) functionalized with donor–acceptor Stenhouse adduct (DASA) and folic acid units for controlled drug delivery and imaging are reported. Upon visible‐light (λ=550 nm) irradiation, CPNs simultaneously undergo structure, color, and polarity changes that release encapsulated drugs into the cells. The backbone of CPNs favors FRET to DASA units boosting their fluorescence. Notably, drug‐loaded CPNs exhibit excellent biocompatibility in the dark, indicating perfect control of the light trigger over drug release. Delivery of both hydrophilic and hydrophobic drugs with good loading efficiency was demonstrated. This strategy enables remotely controlled drug delivery with visible‐light irradiation, which sets an example for designing delivery vehicles for non‐invasive therapeutics.  相似文献   

4.
The histone deacetylase inhibitors (HDACi) are potent drugs in the treatment of inflammatory diseases and defined cancer types. However, major drawbacks of HDACi, such as valproic acid (VPA), are limited serum half‐life, side effects and the short circulation time. Thus, the immobilization of VPA in a polysaccharide matrix is used to circumvent these problems and to design a suitable nanocarrier system. Therefore, VPA is covalently attached to cellulose and dextran via esterification with degree of substitution (DS) values of up to 2.20. The resulting hydrophobic polymers are shaped to spherical nanoparticles (NPs) with hydrodynamic diameter between 138 to 221 nm and polydispersity indices from 0.064 to 0.094 by nanoprecipitation and emulsification technique. Lipase treatment of the NPs leads to in vitro release of VPA and hence to an inhibition of HDAC2 activity in a HDAC2 assay. NPs are rapidly taken up by HeLa cells and mainly localize in the cytoplasm. The NPs are hemocompatible and nontoxic as revealed by the shell‐less hen’s egg model.  相似文献   

5.
6.
张咚咚  刘敬民  刘瑶瑶  党梦  方国臻  王硕 《化学进展》2018,30(12):1908-1919
目前,利用纳米粒子传递药物并用于恶性肿瘤组织的靶向识别,进一步提高肿瘤的诊断和治疗水平是一个比较热点的领域,人们期望用制备容易、价格便宜、毒性小的纳米技术来提高肿瘤的治疗效率。然而,由近年的报道来看,所摄入的纳米粒子仅有约0.7%能够到达肿瘤部位,传递效率较低,这无疑加大了治疗应用的难度。本综述中,我们分析了造成纳米粒子靶向药物转运效率较低的原因,包括纳米粒子的转运途径,纳米粒子转运过程中所遇到的屏障,纳米粒子在体内的清除途径等;随后我们介绍了较早应用的聚合物纳米粒子、磁性氧化铁纳米粒子以及目前广泛研究的介孔二氧化硅纳米粒子在药物传递系统构建中的应用情况,还介绍了细胞膜仿生纳米粒子在药物传递系统中的应用;最后,对纳米粒子在药物传递中的研究进行总结和展望。我们希望通过对纳米粒子传递药物的系统研究,进一步促进纳米粒子在药物传递上的研究,加速纳米药物的临床应用。  相似文献   

7.
Efficient drug delivery to the eye remains a challenging task for pharmaceutical scientists. Due to the various anatomical barriers and the clearance mechanisms prevailing in the eye, conventional drug delivery systems, such as eye drop solutions, suffer from low bioavailability. More invasive methods, such as intravitreal injections and implants, cause adverse effects in the eye. Recently, an increasing number of scientists have turned to nanomaterial‐based drug delivery systems to address the challenges faced by conventional methods. This paper highlights recent applications of various nanomaterials, such as polymeric micelles, hydrogels, liposomes, niosomes, dendrimers, and cyclodextrins as ocular drug delivery systems to enhance the bioavailability of ocular therapeutic agents.

  相似文献   


8.
Functionalization of nanoparticles can significantly influence their properties and potential applications. Although researchers can now functionalize metal, metal oxide, and organic polymer nanoparticles with a high degree of precision, controlled surface functionalization of nanoscale coordination polymer particles (CPPs) has remained a significant challenge. The lack of methodology is perhaps one of the greatest roadblocks to the advancement of CPPs into high added‐value drug delivery applications. Here, we report having achieved this goal through a stepwise formation and functionalization protocol. We fabricated robust nanoparticles with enhanced thermal and colloidal stabilities by incorporation of carboxyl groups and these surface carboxyl groups could be subsequently functionalized through well‐known peptide coupling reactions. The set of chemistries that we employed as proof‐of‐concept enabled a plethora of new functional improvements for the application of CPPs as drug delivery carriers, including enhanced colloidal stabilities and the incorporation of additional functional groups such as polyethylene glycol (PEG) or fluorescent dyes that enabled tracking of their cellular uptake. Finally, we ascertained the cytotoxicity of the new CPP nanoparticles loaded with camptothecin to human breast adenocarcinoma (MCF‐7). Efflux measurements show that the encapsulation of camptothecin enhances the potency of the drug 6.5‐fold and increases the drug retention within the cell.  相似文献   

9.
黎燕  黄卫  黄平  朱新远  颜德岳 《化学进展》2014,26(8):1395-1408
大多数小分子抗肿瘤药物均存在水溶性差、给药量大、体内半衰期短等问题,它们经口服或静脉注射给药后,只能通过自由扩散方式进入细胞,往往缺乏选择性,同时,对肿瘤细胞和正常细胞产生细胞毒性,具有较强的毒副作用,甚至对患者造成二次伤害。因此,它们在临床应用上受到很大限制。通过选择适宜的载体材料构筑抗肿瘤药物输送系统(如胶束、凝胶、纳米粒子等),不仅可以延长小分子抗肿瘤药物的半衰期、降低其毒副作用,而且还可提高其溶解性和生物利用度,因而受到广大科研人员及制药企业的广泛重视。到目前为止,抗肿瘤药物输送系统的发展历史已有60多年,大致可分为传统型、智能型和靶向型三个不同的发展阶段。本文将从这三个不同发展阶段来综述抗肿瘤药物输送系统及其最新的研究进展,并对其未来的发展进行展望。  相似文献   

10.
于京  哈伟  师彦平 《化学进展》2015,27(11):1640-1648
近年来,基于联合用药策略的双药物控释体系的研究为降低抗癌药物毒性和提高疗效提供了有效途径。水凝胶作为一类高临床应用价值的药物载体,在药物控释方面具有广泛的应用前景。癌症是危害人类健康和生命的疾病之一,当人体内正常细胞发生癌变后,癌变细胞周围会发生一些显著的变化。因此,根据肿瘤细胞与正常细胞在体内环境及体外环境的差异,发展了多种智能型水凝胶双抗癌药物控释载体。它能够在感知外界因素的刺激下发生内部结构的变化,从而实现对药物的可控释放。与此同时,随着新的治疗手段的兴起和更多抗癌作用靶点的发现,水凝胶载体也成功实现了化学药物和生物治疗因子的同时负载和可控释放。本文将从不同智能型水凝胶载体如何负载、控释双抗癌药物及水凝胶药物载体中药物的组合方式两方面综述智能型水凝胶双抗癌药物控释体系最新研究进展,并展望其发展前景。  相似文献   

11.
Summary: Carboxymethyl Konjac Glucomannan–Chitosan (CKGM‐CS) nanoparticles, which are well dispersed and stable in aqueous solution, were spontaneously prepared under very mild conditions by polyelectrolyte complexation. Investigations of the physicochemical properties of these nanoparticles were undertaken. This study showed that the nanoparticulate system driven by complex formation has potential as an advanced drug‐delivery system for water‐soluble drugs.

Preparation mechanism of CS–CKGM nanoparticles.  相似文献   


12.
The ever‐growing interest for finding efficient and reliable methods for treatment of diseases has set a precedent for the design and synthesis of new functional hybrid materials, namely porous nanoparticles, for controlled drug delivery. Mesoporous silica nanoparticles (MSNPs) represent one of the most promising nanocarriers for drug delivery as they possess interesting chemical and physical properties, thermal and mechanical stabilities, and are biocompatibile. In particular, their easily functionalizable surface allows a large number of property modifications further improving their efficiency in this field. This Concept article deals with the advances on the novel methods of functionalizing MSNPs, inside or outside the pores, as well as within the walls, to produce efficient and smart drug carriers for therapy.  相似文献   

13.
近年来,智能葡萄糖敏感自调式药物传递系统备受关注。这种智能药物释放系统能够模拟胰腺分泌胰岛素的生理模式而精准调控药物释放并控制血糖水平,在糖尿病治疗中具有良好的应用前景。其中,苯硼酸(PBA)功能化的葡萄糖敏感高分子纳米载体成为近年来的研究热点之一。该类材料具有体系稳定、可长期储存、可逆的葡萄糖敏感性能等优势。根据响应因素不同,葡萄糖敏感药物传递系统可分为pH响应、温度响应和光响应等类型。本文重点介绍了基于PBA的葡萄糖敏感高分子纳米药物载体的发展过程、性能和应用,并对该领域的发展前景进行了展望。  相似文献   

14.
Combating multiple drug resistance necessitates the delivery of drug molecules at the cellular level. Novel drug delivery formulations have made it possible to improve the therapeutic effects of drugs and have opened up new possibilities for research. Solid lipid nanoparticles (SLNs), a class of colloidal drug carriers made of lipids, have emerged as potentially effective drug delivery systems. The use of SLNs is associated with numerous advantages such as low toxicity, high bioavailability of drugs, versatility in the incorporation of hydrophilic and lipophilic drugs, and the potential for production of large quantities of the carrier systems. The SLNs and nanostructured lipid carriers (NLCs) are the two most frequently used types of nanoparticles. These types of nanoparticles can be adjusted to deliver medications in specific dosages to specific tissues, while minimizing leakage and binding to non-target tissues.  相似文献   

15.
16.
In this paper, we present a facile strategy to synthesize hyaluronic acid (HA) conjugated mesoporous silica nanoparticles (MSP) for targeted enzyme responsive drug delivery, in which the anchored HA polysaccharides not only act as capping agents but also as targeting ligands without the need of additional modification. The nanoconjugates possess many attractive features including chemical simplicity, high colloidal stability, good biocompatibility, cell‐targeting ability, and precise cargo release, making them promising agents for biomedical applications. As a proof‐of‐concept demonstration, the nanoconjugates are shown to release cargoes from the interior pores of MSPs upon HA degradation in response to hyaluronidase‐1 (Hyal‐1). Moreover, after receptor‐mediated endocytosis into cancer cells, the anchored HA was degraded into small fragments, facilitating the release of drugs to kill the cancer cells. Overall, we envision that this system might open the door to a new generation of carrier system for site‐selective, controlled‐release delivery of anticancer drugs.  相似文献   

17.
Advanced drug delivery micro- and nanosystems have been widely explored due to their appealing specificity/selectivity, biodegradability, biocompatibility, and low toxicity. They can be applied for the targeted delivery of pharmaceuticals, with the benefits of good biocompatibility/stability, non-immunogenicity, large surface area, high drug loading capacity, and low leakage of drugs. Cardiovascular diseases, as one of the primary mortalities cause worldwide with significant impacts on the quality of patients’ life, comprise a variety of heart and circulatory system pathologies, such as peripheral vascular diseases, myocardial infarction, heart failure, and coronary artery diseases. Designing novel micro- and nanosystems with suitable targeting properties and smart release behaviors can help circumvent crucial challenges of the tolerability, low stability, high toxicity, and possible side- and off-target effects of conventional drug delivery routes. To overcome different challenging issues, namely physiological barriers, low efficiency of drugs, and possible adverse side effects, various biomaterials-mediated drug delivery systems have been formulated with reduced toxicity, improved pharmacokinetics, high bioavailability, sustained release behavior, and enhanced therapeutic efficacy for targeted therapy of cardiovascular diseases. Despite the existing drug delivery systems encompassing a variety of biomaterials for treating cardiovascular diseases, the number of formulations currently approved for clinical use is limited due to the regulatory and experimental obstacles. Herein, the most recent advancements in drug delivery micro- and nanosystems designed from different biomaterials for the treatment of cardiovascular diseases are deliberated, with a focus on the important challenges and future perspectives.  相似文献   

18.
Significant efforts have been invested in finding a delivery system that can encapsulate and deliver therapeutics. Core–shell polymer‐lipid hybrid nanoparticles have been studied as a promising platform because of their mechanical stability, narrow size distribution, biocompatibility, and ability to co‐deliver diverse drugs. Here, novel core–shell nanoparticles based on a poly(lactic‐co‐glycolic acid) (PLGA) core and multilamellar lipid shell are designed, where the lipid bilayers are crosslinked between the two adjacent bilayers (PLGA‐ICMVs). The cross‐platform performance of the nanoparticles to other polymer‐lipid hybrid platforms is examined, including physicochemical characteristics, ability to encapsulate a variety of therapeutics, biocompatibility, and functionality as a vaccine delivery platform. Differential abilities of nanoparticle systems to encapsulate distinct pharmaceutics are observed, which suggest careful consideration of the platform chosen depending on the therapeutic agent and desired function. The novel PLGA‐ICMV platform herein demonstrates great potential in stably encapsulating water‐soluble agents and therefore is an attractive platform for therapeutic delivery.  相似文献   

19.
由于纳米纤维在组织工程支架材料,药物传递载体等方面的潜在应用,使得具有高比表面积的静电纺丝纳米纤维得到了很大的关注。静电纺丝技术是一种简单、有效的微/纳米技术,而同轴静电纺丝则是在传统静电纺丝技术上发展起来的新方法,单步即可制备连续的壳一芯结构纳米纤维或中空纳米纤维。这也使得静电纺丝纳米纤维在组织工程和药物缓释等领域有...  相似文献   

20.
在药物缓释体系中应用的可生物降解材料   总被引:8,自引:0,他引:8  
张晟  王亚辉 《合成化学》1999,7(4):394-400
对目前应用于药物缓释体系中的可生物降解材料的合成及应用作了广泛而深入的总结与评述,并就其发展趋势作了预测。参考文献20篇。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号