首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 15 毫秒
1.
2.
Based on the adsorption performance of a porous nanocomposite with limestone (LS), activated carbon (AC) and sodium alginate (SG), a unique, multifunctional LS–AC–SG nanocomposite absorbent was designed and prepared for extracting antibiotics and drugs from aqueous solutions. The composite exhibited the following advantages: quick and simple to prepare, multifunctionality and high efficiency. Amoxicillin (AMX) and diclofenac (DCF) were chosen as the conventional antibiotic and the drug, respectively. The prepared nanocomposite’s physicochemical characteristics were calculated through numerous characterization methods. The structure of the surface was made up of interconnected pores that can easily confine pollutants. The surface area was measured to be 27.85 m2/g through BET analysis. The results show that the maximum absorption capacity of amoxicillin and diclofenac was 99.6% and 98.4%, respectively, at a contact time of 40 min. The maximum removal of amoxicillin and diclofenac was reached at pH = 2. Adsorption analysis revealed that adsorption isotherm and kinetic data matched the pseudo-first-order kinetic and the Langmuir isotherm models. The results imply that the synthesized nanocomposites have the capacity to remove amoxicillin (AMX) and diclofenac (DCF) from aqueous solutions.  相似文献   

3.
The interaction of β‐peptides with the DNA duplexes of dA20dT20 and a GCN4‐binding CRE sequence was examined. To gauge the factors that govern these interactions, two β‐pentadecapeptides, 1 and 2 , a β‐dodecapeptide, 3 , three β‐decapeptides, 4 – 6 , three β‐heptapeptides, 7 – 9 , and β‐octaarginine 10 were designed and synthesized. The β‐peptides were conceived to adopt a β‐peptide 314 helix, in which the side chains at position i and i + 3 are aligned vertically along one side of the helix. The side chains of Lys, Asn, and Arg were positioned such that potential H‐bonding sites were created for a helical conformation to interact with the base pairs of DNA. CD Analysis showed that β‐peptides 1, 2 , and 10 interacted with dA20dT20. In addition, β‐peptides 1 and 2 showed significant interaction with a DNA‐duplex 20mer containing the ATF/CREB recognition sequence for the regulatory protein GCN4. It is impossible, at this stage of the investigation, to make a safe proposal about the actual nature of the interaction of the structures(s) of the complexes, the formation of which is suggested by the CD spectra reported herein.  相似文献   

4.
We combined a nickel–aluminum–zirconium complex hydroxide (NAZ) with colloidal silica as a binder to prepare a granulated agent for adsorbing heavy metals from aqueous media. Three samples with different particle diameters were prepared to evaluate the effects on the properties: small (NAZ-S), medium (NAZ-M), and large (NAZ-L). We confirmed the granulation of the prepared samples at a binder content of 25%. NAZ-S had the largest specific surface area and number of hydroxyl groups, followed by NAZ-M and then NAZ-L. Regarding the adsorption capacity, NAZ-S adsorbed the most chromium(VI) ions followed by NAZ-M and then NAZ-L. The binding energy of Cr(2p) at 575–577 eV was detected after adsorption, and the effects of the temperature, contact time, and pH on the adsorption of chromium(VI) ions were evaluated. We identified the following adsorption mechanism: ion exchange with sulfate ions in the interlayer region of the NAZ samples. Finally, the chromium(VI) ions adsorbed by the NAZ samples were easily desorbed using a desorption solution. The results showed that NAZ offers great potential for the removal of chromium(VI) ions from aqueous solutions.  相似文献   

5.
This work explores the self‐disproportionation of enantiomers (SDE) via achiral, gravity‐driven column chromatography as typically used in laboratory settings for the purpose of enantiomeric enrichment using N‐(1‐phenylethyl)acetamide (PEA) as a case study. The major finding of this work is the very large magnitude of the SDE for PEA across a variety of conditions and broad range of starting ee values, thereby facilitating a simple, reliable, and predictable means of obtaining enantiomerically pure samples. For example, starting with a sample of PEA of ee as low as 28%, a single column run yielded an enantiomerically pure sample (>99.9% ee) from the first fractions and a significantly enantiomerically depleted sample (<17% ee) from the final fractions. An assessment of SDE via achiral, gravity‐driven column chromatography was also rendered with regard to the differing objectives that workers might target – a large magnitude of the SDE, obtaining an optimum sample of desired ee, or preparative‐scale separation of the excess enantiomer. Overall, it can be considered that the SDE phenomenon via achiral, gravity‐driven column chromatography – readily applicable in the usual laboratory settings – is a simple and convenient method for enantiomeric enrichment with a high degree of proficiency. Advantages of SDE via achiral, gravity‐driven column chromatography over conventional fractional recrystallization for the enantiomeric enrichment of amides/amines, and applicable also to many other classes of compounds as well, are discussed.  相似文献   

6.
A approach was successfully employed for constructing a solid‐state electrochemiluminescence (ECL) immunosensor by layer‐by‐layer self‐assembly of multiwall carbon nanotubes (MWCNTs)‐Nafion composite film, Ru(bpy)32+/nano‐Pt aggregates (Ru‐PtNPs) and Pt nanoparticles (PtNPs). The influence of Pt nanoparticles on the ECL intensity was quantitatively evaluated by calculating the electroactive surface area of different electrodes with or without PtNPs to immobilize Ru(bpy)32+. The principle of ECL detection for target α‐fetoprotein antigen (AFP) was based on the increment of resistance after immunoreaction, which led to a decrease in ECL intensity. The linear response range was 0.01–10 ng mL?1 with the detection limit of 3.3 pg mL?1. The immunosensor exhibited advantages of simple preparation and operation, high sensitivity and good selectivity.  相似文献   

7.
This work describes a polymer reaction engineering framework for understanding how catalyst kinetic parameters affect the microstructure of polyolefins made with single‐ or multi‐site catalysts. Moreover, a methodology for deconvolution and kinetic parameters estimation is presented to estimate the reactivity ratios of multi‐site catalysts based on the combination of polymerization, fractionation, and spectroscopic techniques, namely, gel permeation chromatography‐IR and carbon‐13 nuclear magnetic resonance spectroscopy. The methodology capabilities are then demonstrated and validated using a case study simulated via a Monte Carlo model including random noise in order to better represent experimental result uncertainties. The methodology can reverse engineer experimental results and estimate all relevant reaction performance parameters.  相似文献   

8.
9.
采用分子动力学模拟和拉伸分子动力学模拟方法, 结合分子力学-广义玻恩表面积(MM-GB/SA)方法进行自由能计算和结构交互指纹分析, 研究了模拟过程中非特异性底物(对氧磷/内酯)分别与嗜热磷酸三酯酶样内酯酶(SsoPox)野生型和突变体(W263F/W263T)结合的构象变化, 分析了Loop8中重要残基Trp263的突变提高SsoPox非特异性底物活力的原因, 发现其能够影响门控残基Phe229的构象变化, 导致活性口袋入口变宽(Phe229与Tyr99之间的距离变大), 使对氧磷和内酯更容易结合到蛋白质的活性位点上; Asp256和Arg223形成盐桥的几率高于野生型(WT)SsoPox, 在Arg223(位于Loop7)的协助下质子更加高效地从活性中心的Asp256(位于Loop8)传递到溶剂中去, 因而能够提高SsoPox水解底物的效率. 通过比较2个野生型复合物的结构稳定性和结合自由能差异, 发现在模拟过程中SsoPox与内酯的复合物体系更加稳定并且具有更低的结合自由能, 有利于SsoPox识别底物并使其埋在活性部位的疏水环境中, 促进氢氧化物亲核进攻底物的亲电中心. 因此, 底物与酶稳定的相互作用可能是SsoPox具有天然内酯酶活性的原因之一.  相似文献   

10.
11.
A solid‐state electrochemiluminescence (ECL) biosensor based on special ferrocene‐labeled molecular beacon (Fc‐MB) for highly sensitive detection of promyelocytic leukemia/retinoic acid receptor alpha (PML/RARα) fusion gene was developed successfully using Ru(bpy)${{{2+\hfill \atop 3\hfill}}}$ /2‐(dibutylamino)ethanol (DBAE) as detecting pattern. Such a special sensor involves two main parts, an ECL substrate and an ECL intensity switch. The ECL substrate was made by modifying the complex of Ruthenium (II) tris‐(bipyridine) and Au nanoparticles (Ru(bpy)${{{2+\hfill \atop 3\hfill}}}$ ‐AuNPs) onto the Au electrode (AuE) surface. The molecular beacon probe in which the ferrocene tag could effectively quench the ECL of the Ru(bpy)${{{2+\hfill \atop 3\hfill}}}$ acted as ECL intensity switch. The molecular beacon probe was designed with special base sequence, which could hybridize with its complementary target DNA. In the absence of a target, the hairpin structure of the probe forced the ferrocene (Fc) into close proximity with the ECL substrate, thus reducing ECL intensity. Target binding allowed the Fc away from the ECL substrate and resulted in an obvious increment in ECL intensity due to the decreased Fc quenching effect. The effect of the amount of Ru(bpy)${{{2+\hfill \atop 3\hfill}}}$ and the mixing procedure of Ru(bpy)${{{2+\hfill \atop 3\hfill}}}$ and AuNPs solution on the fabrication of ECL film had been investigated. As a result, the change of ECL intensity had a direct relationship with the logarithm of PML/RARα fusion gene concentration in the range of 0.05–500 pM with a detection limit of 7 fM, and the developed biosensor possessed good molecular recognizability in human serum. Thus, the approach holds promise for the early diagnostics and prognosis monitoring of APL and other diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号