首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
针对现有10 kW高功率工业微波炉,采用继电器作为控制执行器,在使用传统控制方法加热时,温度存在较大超调和明显振荡,系统温度稳定性较低,为解决上述问题将反向传播神经网络PID(BPNNPID)控制引入到该装置微波加热温度控制中,并以自来水为加热对象进行仿真对比与实验验证。首先,利用现有输入输出实验数据,建立工业微波炉温度控制模型;其次,运用MATLAB/SIMULINK搭建高功率工业微波炉温度控制系统并进行仿真对比实验;最后,实验验证BPNNPID控制方法在加热5 kg自来水时工业微波炉的温度控制性能,实验结果表明,较常规PID、模糊PID控制,该方法在微波加热过程中对媒质温度控制超调更小且未发生明显温度振荡,有效改善了高功率工业微波炉工作时的系统温度稳定性,有助于提高产品质量和安全性能。  相似文献   

2.
基于红外热成像的微波热疗透热深度   总被引:5,自引:0,他引:5       下载免费PDF全文
 对临床上常用的2 450 MHz微波在均匀介质中的电透入深度进行了分析,基于生物组织的热波模型,研究了生物组织吸收微波能的热效应;实验采用红外热成像仪测温,以2 450 MHz的微波辐射器辐照均匀的分层仿生体模,根据实验数据对微波热疗中透热深度进行了研究,说明微波的透入深度和透热深度的区别,并给出微波辐射器的功率、辐照距离和辐照持续时间对透热深度的影响。结果表明:当采用增大功率、延长辐照时间和近距离辐照等手段,都可以提高微波在人体的透热深度,为体外微波热疗中的人体传输模型建立及热疗的无损测温与控温奠定实验基础。  相似文献   

3.
橡胶微波加热的数值模拟研究   总被引:2,自引:0,他引:2  
本文运用ANSYS有限元软件对橡胶的微波加热过程进行了数值模拟研究,分别获得了传统加热方式下和微波功率为5 kW,6 kW,7 kW,8 kW,9 kW,10 kW时橡胶的升温效应,结果表明,微波加热的时间短,效率高。经微波加热后橡胶内部的焦耳热密度分布和温度分布不均匀,但橡胶的温度分布规律与焦耳热密度分布规律相同,胶料中间部位升温最高,并且胶料的温度随微波功率的升高而升高。  相似文献   

4.
母健  冯国英  杨火木  唐淳  周寿桓 《物理学报》2013,62(12):124204-124204
针对薄片激光介质抽运和温度分布不均匀的问题, 设计了分区域主动冷却控制薄片激光器. 根据热传导方程, 对端面抽运方形薄片激光介质在均匀冷却和分区域主动冷却两种冷却方式下的温度和应力分布进行了模拟计算. 结果显示: 分区域主动冷却能使薄片介质横向温度分布趋于均匀, 相对于均匀冷却时最大温差的改善率达到了约86%, 介质边缘的张应力转变为低值压应力,有效地抑制了热应力炸裂. 搭建了分区域主动冷却控制实验装置, 并进行了验证实验, 实验结果与模拟结果相符. 为薄片激光器的热管理方式提供了新的思路. 关键词: 薄片激光器 端面抽运 分区域主动冷却 数值模拟  相似文献   

5.
光谱发射率是表征材料热物理性能的重要参数。对于非导电材料的高温光谱发射率测试,一般采用高温加热炉加热或辐射加热的方式来进行发射率测试,存在的问题是采用高温石墨炉加热时,样品可能会与高温石墨发生化学反应,从而破坏材料原有物性;采用辐射加热,一般是单向静止加热,会存在样品温场梯度非均匀分布的问题。基于激光旋转加热和样品/黑体整体一体化设计,提出了一种“样品动中测”的非导电材料高温光谱发射率测试新方法,建立了相应的测量模型,突破了传统的 “样品静中测”的局限,样品与参考黑体共形一体化设计,采用微区域光谱辐射成像方法,同时测量参考黑体和样品的光谱辐射能量与温度。建立了激光旋转加热状态下的热传导方程,对典型样品材料的温度分布进行了仿真计算,结果表明旋转样品温场分布较为均匀,分析了温场分布与红外光谱发射率测量误差间的关系,给出了适用于本测试方法的材料的热导率下限值。基于该方法,搭建了相应的测量装置,对典型材料碳化硅在1 000 K时的光谱发射率进行了测试,在4 μm处对各个典型高温温度点的光谱发射率进行了测试,得到了碳化硅材料在红外波段的光谱发射率波长变化和温度变化规律特性。与国外的测量结果进行了比对,结果较为一致,验证了激光旋转加热光谱发射率测试方法的可行性。采用此方法,不破坏样品本身的理化特性,样品加热升温速度快,测量温度范围上限高,有效减小了激光静止单向加热带来的温度不均匀性,可同时测量出样品和参考黑体的光谱辐射亮度及温度,无需另外再设计标准高温黑体,解决了现有非导电材料高温光谱发射率测试中非均匀加热和辐射能量同步比对测量的问题,可应用于多种非导电材料高温光谱发射率的测试。  相似文献   

6.
通过OH自由基A~2Σ~+→X~2Π_r电子带系分子发射光谱测温法,实现了对氩气、氮气、空气三种大气压微波等离子体气体温度的测量。探究了不同微波功率、不同气体流量下气体温度的变化规律,测量了氮气、空气微波等离子体羽流的轴向温度分布。实验结果表明,不同工作条件下微波等离子体核心温度普遍超过2 000K,空气微波等离子体可超过6 000K;同样工作条件下三种微波等离子体气体温度满足:T_(Ar)T_N_2T_(Air);气体温度总体上随微波功率增加而小幅增加,随气体流量下降而小幅降低;氮气与空气等离子体羽流温度沿轴向迅速降低。为验证分子发射光谱测温法的准确性,以热电偶测温作为比对,对温度较低的介质阻挡放电氩气等离子体进行了温度测量,实验表明,分子发射光谱法与热电偶所测结果十分接近。  相似文献   

7.
介绍了一种使用电机驱动外燃加热的平衡活塞式热压缩机,建立等温模型,并对系统进行理论分析。在不同的温度及充气压力下,对系统的性能进行实验,得出该系统在1.5 MPa充气压力下,热端温度为560℃,冷端温度为40℃,加热功率1500 W,驱动功率120 W,运行频率6 Hz时,压比可以达到1.37。采用外燃加热的方式,可以...  相似文献   

8.
给出了描述高功率微波脉冲大气非线性传输及微波大气等离子体特征演化的方程组,并在以微波群速度运动的局域坐标系下完成程序编制。据此模拟分析了高功率微波大气长程非线性传输及自产生大气等离子体的基本物理过程,给出了在击穿建立过程中,电子数密度增长与电子温度升高之间的关系。模拟结果表明:由于大气层中本底自由电子数密度较低,高功率微波脉冲到达时会迅速地将大气中现有的自由电子加热至平衡温度,与之相比导致电子数密度雪崩式增长的击穿过程要缓慢得多,而且随着击穿过程的开始电子温度会从平衡温度快速下降。  相似文献   

9.
易鑫  汪之国  夏涛  徐迪  杨开勇 《中国光学》2016,9(6):671-677
为研究核磁共振陀螺中加热机构对原子气室性能的影响,设计了5种典型加热方式。利用有限元分析软件ANSYS建立了原子气室的温度场模型,给出了原子气室表面的稳态温度场分布情况。同时设计了探测精度为0.01℃的测温电路,对原子气室表面不同位置的温度进行监控,获得了不同加热方式下原子气室表面的温度变化情况。将仿真和实验结果进行比较,发现误差在5%之内,验证了仿真模型的正确性。综合仿真和实验结果比较了不同加热方式下原子气室表面温度分布情况,获得了能够使原子气室表面温度分布最均匀的加热方式。  相似文献   

10.
通过OH自由基A2Σ+X2Πr电子带系分子发射光谱测温法,实现了对氩气、氮气、空气三种大气压微波等离子体气体温度的测量。探究了不同微波功率、不同气体流量下气体温度的变化规律,测量了氮气、空气微波等离子体羽流的轴向温度分布。实验结果表明,不同工作条件下微波等离子体核心温度普遍超过2 000 K,空气微波等离子体可超过6 000 K;同样工作条件下三种微波等离子体气体温度满足:TAr<TN2<TAir;气体温度总体上随微波功率增加而小幅增加,随气体流量下降而小幅降低;氮气与空气等离子体羽流温度沿轴向迅速降低。为验证分子发射光谱测温法的准确性,以热电偶测温作为比对,对温度较低的介质阻挡放电氩气等离子体进行了温度测量,实验表明,分子发射光谱法与热电偶所测结果十分接近。  相似文献   

11.
光在介质中的传播遵循费马原理.在均匀介质中光沿直线传播,非均匀介质中,光的传播轨迹比较复杂.本文以蔗糖溶液为研究对象,设计了光在非均匀介质中传播实验,建立了相关模型,理论分析了溶液折射率随深度(浓度)变化的关系.进行了数据拟合,得出溶液折射率随液体深度变化的表达式.  相似文献   

12.
本文对高温热管吸液芯多孔介质内金属钠液的液汽相变过程进行了模拟研究,并采用流体体积分数模型和传质模型对此过程进行了数值分析.研究表明孔隙率和渗透率越大的组合式吸液芯多孔介质,热量在液态金属中的传递速率越快,进而可以增加高温热管的传热量,提高传热效率;但是孔隙率和渗透率越大,组合式吸液芯多孔介质加热壁面的温度分布越不均匀,产生沸腾传热极限的可能性亦越大.  相似文献   

13.
本文以透过燃料电池增湿系统中多孔介质板的热湿传递过程为研究对象,建立了实验系统,测量并比较了高温高湿气体(增湿气体)透过多孔介质板对低温低湿气体(被增湿气体)进行加热加湿时,气体的相对流向、温度与相对湿度等对多孔介质板热湿传递特性的影响。结果表明,在使用相同的多孔介质板的前提下,使用逆流流向、提高增湿气体进口温度和相对湿度对多孔介质板两侧的换热和水分传递量的提高更加有利;同时,使用逆流流向、提高增湿气体进口温度以及降低其相对湿度有助于水分回收率的提高。  相似文献   

14.
胶原蛋白的三股螺旋结构是其不同于其他蛋白质的特殊结构,也是其具有特殊功能的基础,然而,胶原的三股螺旋结构易在外界条件的影响下被破坏。目前微波已被越来越多的应用于胶原蛋白的提取和改性过程,但是关于微波辐照对胶原蛋白结构影响的研究还相对较少。首先从牛跟腱中提取胶原蛋白,然后采用0.5 mg·mL-1的胶原蛋白溶液在30 ℃下以微波辐照保温为实验样,水浴加热和未经加热处理为对比样,最后采用紫外-可见光谱、傅里叶变换红外光谱、圆二色谱以及荧光发射光谱等方法,对不同加热方法中胶原蛋白的三股螺旋结构和超分子结构进行表征,研究了微波辐照对胶原蛋白结构的影响。实验结果表明,在低于胶原变性温度的条件下,无论是微波辐照还是水浴加热都不会破坏胶原蛋白的三股螺旋结构,也不会使胶原蛋白变性。但是,与水浴加热相比,微波辐照会对胶原蛋白的聚集行为产生抑制作用。微波辐照对胶原蛋白的作用既有与常规加热相同的热效应,又有常规加热过程中不存在的非热效应,非热效应表现为抑制胶原蛋白的聚集行为。研究结果可为微波场中胶原蛋白结构和性质的变化提供科学依据。  相似文献   

15.
LDA侧面泵浦Nd:YAG激光器的热效应分析   总被引:2,自引:1,他引:2       下载免费PDF全文
 在高斯光强近似下对泵浦LD光强分布模型进行修正,建立了LDA侧面泵浦固体激光介质内热源分布的数值模型。用有限元法计算模拟了三角均匀分布侧面泵浦结构激光棒瞬态温升过程及稳态温度分布情况。讨论比较了泵浦源的高斯强度近似和均匀强度近似下激光棒内温度分布情况,并对激光棒的类热透镜的焦距进行实验测量。实验和数值计算说明了LDA泵浦结构和冷却场的非均匀分布使实际温度场偏离均匀泵浦时的二次曲线分布模型,激光晶体热效应产生的类透镜会聚作用的不对称导致了激光器输出光束质量在x,y方向上的不同。  相似文献   

16.
XRD粉末衍射法研究微波场作用下4A分子筛的合成   总被引:1,自引:0,他引:1  
在微波场作用下合成了粒度均匀、白度和钙离子交换容量高、性能优异的4A分子筛。用XRD粉末衍射法研究了硅铝比、水钠比、微波功率和微波加热时间对微波合成4A分子筛的影响,找出了在微波场作用下合成4A分子筛的最佳条件,并用IR, SEM和DSC等方法对合成的产物进行了表征。  相似文献   

17.
在托卡马克实验装置上进行等离子体低杂波电流驱动和加热实验,需要输入兆瓦量级的微波功率。这是由多只大功率速调管并联运行而实现的,而这些速调管需要前级微波激励源进行驱动。我们目前使用的微波激励源经过十几年的使用,元器件老化和磨损严重,导致了整个设备工作性能的明显下降,不能满足低杂波电流驱动和加热实验的多管并联运行的实验要求。因此有必要设计一个新的微波激励源,工作部件全部采用固态微波器件,稳幅控制。模块化设计采用多路输出,新增加微波相位多路控制,以满足以后实验中低杂波电流驱动和加热两种不同工作方式的需求。  相似文献   

18.
高功率微波与等离子体相互作用理论和数值研究   总被引:5,自引:0,他引:5       下载免费PDF全文
袁忠才  时家明 《物理学报》2014,63(9):95202-095202
研究高功率微波与等离子体的相互作用,对于微波放电和电磁兼容研究均具有重要意义.基于波动方程、等离子体的流体力学方程以及波尔兹曼方程,建立高功率微波脉冲与等离子体相互作用的理论模型,并结合等离子体的特征参数,采用时域有限差分方法分析了等离子体电子密度和高功率微波传输特性的变化.结果表明,由于高功率微波的电子加热作用,等离子体中的非线性效应明显,发生击穿使得等离子体电子密度增大,从而导致微波的反射增强,透过率降低.所提出的模型和相关结果对于高功率微波和电磁脉冲防护具有指导意义.  相似文献   

19.
飞秒激光加热金属薄膜时会在金属内部形成电子温度和晶格温度不平衡的热输运过程,此过程一般可以用抛物两步模型描述。飞秒激光抽运-探测技术可以对上述过程中金属表面的瞬时电子温度进行测量。通过上述实验结果结合抛物两步模型,反推金属微尺度热物性参数是一个反演问题。本文分析了此反演问题求解的可行性,并采用遗传算法对此反演问题进行了...  相似文献   

20.
夏新源  李平  孟晓辉  理华 《应用声学》2016,35(4):334-342
为研究医学超声成像中的相位畸变模型,通过Westervelt方程的时域有限差分方法,仿真比较了近场相位屏模型、全局声速误差模型以及分层介质模型在聚焦发射过程和回波信号接收过程的特点,并参考理想均匀介质与人体非均匀介质的结果,发现几种相位畸变模型都难以准确模拟人体腹壁对发射声场的影响,同时近场相位屏模型相对其他两种模型虽然能够较好地描述出非均匀组织的相位畸变特点,但无法表现出全局声速误差模型及分层介质模型中相位误差跟随目标方位变化的关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号