首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Inclusion of edible insects in human diets is increasingly promoted as a sustainable source of proteins with high nutritional value. While consumer acceptability remains the main challenge to their integration into Western food culture, the use of edible insects as meal and protein concentrate could decrease neophobia. The defatting of edible insects, mostly done with hexane, is the first step in producing protein ingredients. However, its impact on protein profiles and techno-functionality is still unclear. Consequently, this study compares the protein profiles of hexane-defatted and non-hexane-defatted yellow mealworm (Tenebrio molitor) meals and protein extracts, and evaluates the impact of hexane on protein solubility and foaming properties. Results showed that profiles for major proteins were similar between hexane-defatted and non-defatted samples, however some specific content differences (e.g., hexamerin 2) were observed and characterized using proteomic tools. Protein solubility was markedly lower for T. molitor meals compared to protein extracts. A large increase in the foaming capacity was observed for defatted fractions, whereas foam stability decreased similarly in all fractions. Consequently, although the hexane-defatting step was largely studied to produce edible insect protein ingredients, it is necessary to precisely understand its impact on their techno-functional properties for the development of food formulations.  相似文献   

2.
Virgin coconut oil (VCO) has been gaining popularity in recent times. During its production, byproducts such as coconut skim milk and insoluble protein are obtained which are underutilized or thrown away to the environment at present. This study deals with utilization of these byproducts to obtain a value-added product, namely, coconut protein powder. When coconut milk was subjected to centrifugation, three phases, namely, fat phase (coconut cream), aqueous phase (coconut skim milk), and solid phase (insoluble protein) were obtained. The coconut skim milk and insoluble protein were mixed and homogenized before spray drying to obtain a dehydrated protein powder. The proximate analysis of the powder showed high protein content (33?% w/w) and low fat content (3?% w/w). Protein solubility was studied as a function of pH and ionic content of solvent. Functional properties such as water hydration capacity, fat absorption capacity, emulsifying properties, wettability, and dispersibility of coconut protein powder were evaluated along with morphological characterization, polyphenol content, and color analysis. Coconut protein powder has shown to have good emulsifying properties and hence has potential to find applications in emulsified foods. Sensory analysis showed high overall quality of the product, indicating that coconut protein powder could be a useful food ingredient.  相似文献   

3.
Insects represent a rich source of protein and a more sustainable alternative to conventional animal sources. Insect proteins are diverse in amino acid composition, structure, and physicochemical and functional properties. Processing treatments cause changes in properties of insect proteins and protein-enriched fractions of varying purity, affecting their techno-functional properties and the possible application range. This review discusses recent findings on the effect of processing techniques on the techno-functionality of insect protein fractions including solubility, foaming, emulsifying, and gelling properties. It is demonstrated that a treatment type and its intensity alter physicochemical and functional properties to different degrees. The review also shows the potential for the production of insect-derived food ingredients with tailored functional properties using the diversity of available processing methods.  相似文献   

4.
The growing human population renders challenges for the future supply of food products with high nutritional value. Here, we enhanced the functional and nutritional value of biscuits, a popular sweet snack, by replacing the wheat flour with 2%, 6%, or 10% (w/w) cricket powder. Consumer acceptance ratings for reference and 2% augmented cookies were comparable, whereas the higher levels of enhancement received inferior consumer scores. This relatively small change in biscuit recipe provided significant and nutritionally desirable enhancements in the biscuits, observed in a series of analyses. An increase in the protein content was observed, including essential amino acids, as well as minerals and fat. This conversion also affected the physical properties of the biscuits, including hardness, and water molecular dynamics measured by 1H NMR. Cricket powder-augmented biscuits join the line of enhanced, functionally superior food products. This and similar food augmentation provide a viable scenario to meet the human food demands in the future.  相似文献   

5.
Berry pomace, rich in polyphenols, especially anthocyanins, accumulates during the production of red juices. Pomace from chokeberry (Aronia melanocarpa Michx.), bilberry (Vaccinium myrtillus L.), and elderberry (Sambucus nigra L.) represent good sources of coloring foodstuffs. Pomace powders (PP) were prepared by milling the seedless fractions of the three dried berry pomaces (50 °C, 8 h). Techno-functional properties of the powders such as particle size distribution, bulk density, sedimentation velocity, and swelling capacity were determined to evaluate the powders for possible food applications. Total anthocyanin content was quantified by UHPLC-DAD before and during a storage experiment to monitor the degradation of anthocyanins in the PP and in a yogurt model application. The high content of phenolic compounds and the still intact cell structure ensured high stability of anthocyanins over 28 days of storage. In the model application, color saturation was stable over the whole storage time of 14 days. Regarding the techno-functional properties, only a few differences between the three PP were observed. The particle size of elderberry PP was larger, resulting in lowest bulk density (0.45 g/mL), high cold-water solubility (16.42%), and a swelling capacity of 10.16 mL/g dw. Sedimentation velocity of the three PP was fast (0.02 mL/min) due to cluster formation of the particles caused by electrostatic and hydrophobic properties. Compared to other high-intensity coloring foodstuffs, the use of PP, showing acceptable color stability with potential health-promoting effects, represents a wide applicability in different food applications and especially in products with a longer shelf-life.  相似文献   

6.
Moringa oleifera leaf powder (MOLP) is a rich source of antioxidants, protein, minerals, vitamins, and various phytochemicals and has been used to combat malnutrition in many countries. However, despite its many benefits, MOLP has low a solubility in water, necessitating the development of ways to address this issue. To improve the solubility of MOLP, solid-dispersed Moringa oleifera leaf powders (SDMOLPs) have been developed through freeze-drying, melting, microwave irradiation, and solvent evaporation methods using polyethylene glycols (PEG4000 and PEG6000) (1:1) as hydrophilic carriers. The solid dispersions were evaluated for their proximate composition using standard analytical procedures. Elemental composition was characterized using scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDS). Water absorption capacity (WAC) and water-solubility were further evaluated as functional properties. Proximate composition revealed that MOLP and SDMOLPs were rich in protein, energy, carbohydrate, ash, and fat contents. MOLP solid dispersions are a major source of minerals (Ca, Mg, Cu, and Zn), and can be used to alleviate many mineral deficiencies. All solid dispersions had significantly higher (p < 0.05) solubilities (ranging from 54 to 64%) and WAC (ranging from 468.86 to 686.37%), relative to that of pure MOLP. The increased solubility of SDMOLPs may be attributed to the hydrogen bonds and intermolecular interactions between MOLP and the hydrophilic carriers. The results indicate that the solid dispersion technique can be successfully employed to improve the solubility of MOLP. And the solid-dispersed MOLPs with enhanced functional properties may be useful as functional ingredients in foods and beverages, dietary supplements, or nutraceutical formulations.  相似文献   

7.
The hemp seed contains protein fractions that could serve as useful ingredients for food product development. However, utilization of hemp seed protein fractions in the food industry can only be successful if there is sufficient information on their levels and functional properties. Therefore, this work provides a comparative evaluation of the structural and functional properties of hemp seed protein isolate (HPI) and fractions that contain 2S, 7S, or 11S proteins. HPI and protein fractions were isolated at pH values of least solubility. Results showed that the dominant protein was 11S, with a yield of 72.70 ± 2.30%, while 7S and 2S had values of 1.29 ± 0.11% and 3.92 ± 0.15%, respectively. The 2S contained significantly (p < 0.05) higher contents of sulfhydryl groups at 3.69 µmol/g when compared to 7S (1.51 µmol/g), 11S (1.55 µmol/g), and HPI (1.97 µmol/g). The in vitro protein digestibility of the 2S (72.54 ± 0.52%) was significantly (p < 0.05) lower than those of the other isolated proteins. The intrinsic fluorescence showed that the 11S had a more rigid structure at pH 3.0, which was lost at higher pH values. We conclude that the 2S fraction has superior solubility, foaming capacity, and emulsifying activity when compared to the 7S, 11S, and HPI.  相似文献   

8.
Tremella fuciformis (Berk.), also known as silver ear, has a high economic value due to being a valuable edible and medicinal mushroom. The focus of this study was on the various particle sizes of 80–300 mesh (particle diameters from 2 mm to 250 μm) for freeze-drying silver ear powder in order to determine the water-holding capacity, viscosity, and crude polysaccharide content of various particle sizes. Our aim was to determine the possible conditions for silver ear powder for food processing under the conditions of oxidation/non-oxidation and heat treatment. Overall, we obtained various particle sizes of silver ear powder, the water-holding capacity decreased from 21.84 to 14.82 g g?1, the viscosity increased from 8.53 to 71.20 cP, and the content of crude polysaccharides, which remained almost constant, was approximately 300 mg g?1. In addition, the smaller the particle size of silver ear powder, the greater the thermal stability of the particles by differential scanning calorimetry (DSC) and thermogravimetric (TG) tests. The results for various particle sizes of silver ear powder in food processing are never more than ca. 240 °C by DSC tests. Moreover, comparing the results of thermal decomposition using TG analyzer under nitrogen and air conditions, in nitrogen, the various particle sizes have better preservation for storage conditions and the smaller particle size powders retained good thermal decomposition characteristics.  相似文献   

9.
The manufacture of food dispersions (emulsions and foams) with specific quality attributes depends on the selection of the most appropriate raw materials and processing conditions. These dispersions being thermodynamically unstable require the use of emulsifiers (proteins, lipids, phospholipids, surfactants etc.). Emulsifiers typically coexist in the interfacial layer with specific functions in the processing and properties of the final product. The optimum use of emulsifiers depends on our knowledge of their interfacial physico-chemical characteristics - such as surface activity, amount adsorbed, structure, thickness, topography, ability to desorb (stability), lateral mobility, interactions between adsorbed molecules, ability to change conformation, interfacial rheological properties, etc. -, the kinetics of film formation and other associated physico-chemical properties at fluid interfaces. These monolayers constitute well defined systems for the analysis of food colloids at the micro- and nano-scale level, with several advantages for fundamental studies. In the present review we are concerned with the analysis of physico-chemical properties of emulsifier films at fluid interfaces in relation to foaming. Information about the above properties would be very helpful in the prediction of optimised formulations for food foams. We concluded that at surface pressures lower than that of monolayer saturation the foaming capacity is low, or even zero. A close relationship was observed between foaming capacity and the rate of diffusion of the foaming agent to the air-water interface. However, the foam stability correlates with the properties of the film at long-term adsorption.  相似文献   

10.
Two common extraction solvent systems, namely acidified aqueous methanol and acidified aqueous acetone, were used to extract blackberry phenolics, and the antioxidant properties of the recovered extracts were compared. The crude extracts were fractionated into low- and high-molecular-weight phenolics by Sephadex LH-20 column chromatography. The hydrophilic-oxygen radical absorbance capacity (H-ORACFL), ferric reducing antioxidant power (FRAP), and the cellular antioxidant activity (CAA) assays were employed as indices to assess antioxidant capacity of the extracts and their respective fractions. The methanolic solvent system displayed a greater efficiency at extracting anthocyanin and flavonol constituents from the blackberries, while the acetonic solvent system was better at extracting flavan-3-ols and tannins. Anthocyanins were the dominant phenolic class found in the blackberries with 138.7 ± 9.8 mg C3G eq./100 g f.w. when using methanol as the extractant and 114.6 ± 3.4 mg C3G eq./100 g f.w. when using acetone. In terms of overall antioxidant capacity of blackberry phenolics, the acetonic solvent system was superior. Though present only as a small percentage of the total phenolics in each crude extract, the flavan-3-ols (42.37 ± 2.44 and 51.44 ± 3.15 mg/100 g f.w. in MLF and ALF, respectively) and ellagitannins (5.15 ± 0.78 and 9.31 ± 0.63 mg/100 g f.w. in MHF and AHF, respectively) appear to account for the differences in the observed antioxidant activity between the two solvent systems.  相似文献   

11.
Raman spectroscopy has significant potential for the quantification of food products. Milk powder is an important foodstuff and ingredient that is produced on large scale (over 20 million tonnes per annum). Raman spectroscopy, unlike near- and mid-infrared spectroscopies, has not been used extensively to quantify milk powder constituents. The effect of sample presentation on spectroscopic calibrations of protein and fat for 136 New Zealand milk powders was assessed using Raman spectroscopy. Prediction models were produced to quantify a protein concentration range of 32.19-37.65% w/w for skim milk powder, and a protein concentration range of 23.34-25.02% w/w and a fat concentration range of 26.26-29.68% w/w for whole milk powder (where ratios of prediction to deviation exceeded 2.6 with one exception). The resultant calibrations were not influenced by sample orientation; the sample temperature during data collection did affect the calibrations. Calcium fortification in the form of calcium carbonate was identified within a sub-set of samples, reinforcing the efficacy of Raman spectroscopy for identifying both crystalline and non-crystalline constituents within milk powder.  相似文献   

12.
Natural biopolymers from plant sources contain many impurities (e.g., fat, protein, fiber, natural pigment and endogenous enzymes), therefore, an efficient purification process is recommended to minimize these impurities and consequently improve the functional properties of the biopolymer. The main objective of the present study was to investigate the effect of different purification techniques on the yield, protein content, solubility, water- and oil-holding capacity of a heteropolysaccharide-protein biopolymer obtained from durian seed. Four different purification methods using different chemicals and solvents (i.e., A (isopropanol and ethanol), B (isopropanol and acetone), C (saturated barium hydroxide), and D (Fehling solution)] to liberate the purified biopolymer from its crude form were compared. In most cases, the purification process significantly (p < 0.05) improved the physicochemical properties of heteropolysaccharide-protein biopolymer from durian fruit seed. The present work showed that the precipitation using isopropanol and acetone (Method B) resulted in the highest purification yield among all the tested purification techniques. The precipitation using saturated barium hydroxide (Method C) led to induce the highest solubility and relatively high capacity of water absorption. The current study reveals that the precipitation using Fehling solution (Method D) most efficiently eliminates the protein fraction, thus providing more pure biopolymer suitable for biological applications.  相似文献   

13.
Cricket powder, described in the literature as a source of nutrients, can be a valuable ingredient to supplement deficiencies in various food products. Work continues on the implementation of cricket powder in products that are widely consumed. The aim of this study was to obtain gluten-free bread with a superior nutritional profile by means of insect powder addition. Gluten-free breads enriched with 2%, 6%, and 10% of cricket (Acheta domesticus) powder were formulated and extensively characterized. The nutritional value, as well as antioxidant and β-glucuronidase activities, were assessed after simulated in vitro digestion. Addition of cricket powder significantly increased the nutritional value, both in terms of the protein content (exceeding two-, four-, and seven-fold the reference bread (RB), respectively) and above all mineral compounds. The most significant changes were observed for Cu, P, and Zn. A significant increase in the content of polyphenolic compounds and antioxidant activity in the enriched bread was also demonstrated; moreover, both values additionally increased after the digestion process. The total polyphenolic compounds content increased about five-fold from RB to bread with 10% CP (BCP10), and respectively about three-fold after digestion. Similarly, the total antioxidant capacity before digestion increased about four-fold, and after digestion about six-fold. The use of CP also reduced the undesirable activity of β-glucuronidase by 65.9% (RB vs. BCP10) in the small intestine, down to 78.9% in the large intestine. The influence of bread on the intestinal microflora was also evaluated, and no inhibitory effect on the growth of microflora was demonstrated, both beneficial (Bifidobacterium and Lactobacillus) and pathogenic (Enterococcus and Escherichia coli). Our results underscore the benefits of using cricket powder to increase the nutritional value and biological activity of gluten-free food products.  相似文献   

14.
The aim is to understand the effect of matrix elasticity on continuous foaming using food models based on glucose syrup. This was modified by adding polyacrylamide (PAA) with 2% whey protein isolate (WPI) or Tween 80 as foaming agents. Foaming was conducted in a stirred column. Rotation speed N and gas-to-liquid flow ratio (G/L) were varied. Overrun, average bubble size d (32), texture and stability were measured using densimetry, image analysis, and rheometry, respectively. Experimental results showed that 0.01% PAA did not modify the viscosity of 2% WPI models, but conferred low elastic behavior. PAA (0.05%) doubled matrix viscosity and drastically increased elasticity. The increase of elasticity became slower for further PAA addition. Foaming experiments demonstrated that theoretical overrun could not be achieved for inelastic WPI models in two cases: for high viscosity and low N, as dispersion effectiveness was reduced; for high G/L and N because of enhanced coalescence. Matrix elasticity was shown to increase overrun at constant viscosity for high G/L by enhancing interface stabilization. However, in elastic models, gas dispersion was more difficult and d (32) was higher than in inelastic fluids of similar viscosity. Finally, when the limiting step was dispersion, foaming was shown to be negatively affected by matrix elasticity.  相似文献   

15.
BackgroundHydrocolloids are hydrophilic biopolymers which are widely used in the food industry due to their functional properties. In the present study, sesame hydrocolloids (Sesamum indicum) were obtained and, consequently, their physicochemical, proximal composition, functional, and rheological properties were evaluated to establish their potential applications in the food industry. Methods: Hydrocolloids were obtained from sesame seeds at 80 °C on evaluating the pH at 3, 7, and 10 and specific flour: water ratios during the solubilization process. Results: The hydrocolloids obtained had a good relationship between carbohydrates and proteins, which increased their potential use in the development of colloidal systems. The samples had high water holding capacity, solubility, and appropriate emulsifying and foaming properties. The hydrocolloids showed non-Newtonian shear-thinning behavior, adjusted to the Carreau-Yasuda model. Based on the dynamic viscoelastic rheological test, samples were characterized as a gel-like state when storage modulus values were higher than the loss modulus in the frequency and temperature ranges investigated. Conclusion: The findings revealed that sesame seeds can be considered appropriate raw material for extracting hydrocolloids as an alternative for obtaining natural food ingredients with interesting functional and rheological properties, with further applications in the development and formulation of micro-structured products.  相似文献   

16.
A solvent free microwave hydrodiffusion and gravity extraction (MHG) of flavonol content from onion (Allium cepa L.) was studied. Effectiveness of this innovative method in extraction of onion total phenolic content, total quercetin (TQ), quercetin aglycon (QA), quercetin-3,4′-diglucoside (QDG), quercetin-4′-monoglucoside (Q4G), quercetin-3-monoglucoside (Q3G), kaempferol (KMF) and myricetin (MRT) have been evaluated and compared with conventional solvent extraction. Microwave extraction offers important advantages like shorter extraction time (23 min), cleaner feature (no solvent or water used) and extraction of valuable onion crude juice retaining fresh organoleptic properties with higher phenolic content (58.29 mg GAE/g DW) at optimized power (500 W). Microwave extraction resulted significant yield (81.5%) with 41.9% of flavonol contents, with better retain of remaining flavonoids (55.9%) in residues of onions. QDG (239.7 mg/100 g DW) and Q4G (82.55 mg/100 g DW) have been reported the main flavonol in this study. Minor quantities of QA (traces), Q3G (4.22 mg/100 g DW) and KMF (3.99 mg/100 g DW) were also detected in microwave onion extracts.  相似文献   

17.
Whipped foams (10%, w/v protein, pH 7.0) were prepared from commercially available samples of whey protein isolate (WPI) and egg white protein (EWP), and subsequently compared based on yield stress (τ0), overrun and drainage stability. Adsorption rates and interfacial rheological measurements at a model air/water interface were quantified via pendant drop tensiometry to better understand foaming differences among the ingredients. The highest τ0 and resistance to drainage were observed for standard EWP, followed by EWP with added 0.1% (w/w) sodium lauryl sulfate, and then WPI. Addition of 25% (w/w) sucrose increased τ0 and drainage resistance of the EWP-based ingredients, whereas it decreased τ0 of WPI foams and minimally affected their drainage rates. These differing sugar effects were reflected in the interfacial rheological measurements, as sucrose addition increased the dilatational elasticity for both EWP-based ingredients, while decreasing this parameter for WPI. Previously observed relationships between τ0 and interfacial rheology did not hold across the protein types; however, these measurements did effectively differentiate foaming behaviors within EWP-based ingredients and within WPI. Interfacial data was also collected for purified β-lactoglobulin (β-lg) and ovalbumin, the primary proteins of WPI and EWP, respectively. The addition of 25% (w/w) sucrose increased the dilatational elasticity for adsorbed layers of β-lg, while minimally affecting the interfacial rheology of adsorbed ovalbumin, in contrast to the response of WPI and EWP ingredients. These experiments underscore the importance of utilizing the same materials for interfacial measurements as used for foaming experiments, if one is to properly infer interfacial information/mechanisms and relate this information to bulk foaming measurements. The effects of protein concentration and measurement time on interfacial rheology were also considered as they relate to bulk foam properties. This data should be of practical assistance to those designing aerated food products, as it has not been previously reported that sucrose addition improves the foaming characteristics of EWP-based ingredients while negatively affecting the foaming behavior of WPI, as these types of protein isolates are common to the food industry.  相似文献   

18.
Fruit peels, pericarps, or rinds are rich in phenolic/polyphenolic compounds with antioxidant properties and potentially beneficial effects against obesity and obesity-related non-communicable diseases. This study investigated the anti-obesity effects of matoa (Pometia pinnata) and salak (Salacca zalacca) fruit peel. Neither matoa peel powder (MPP) nor salak peel powder (SPP) affected the body weight, visceral fat weight, or serum glucose or lipid levels of Sprague–Dawley rats when included as 1% (w/w) of a high-fat diet (HFD). However, MPP significantly decreased the hepatic lipid level. MPP at a dose of 3% (w/w) of the HFD decreased body weight, visceral fat, and serum triglyceride levels as well as the hepatic lipid content. The inhibitory effect of MPP on hepatic lipid accumulation was not enhanced when its concentration was increased from 1% to 3% of the HFD. The anti-obesity effect of matoa was partly explained by the inhibitory effect of the matoa peel extract on fatty acid-induced secretion of ApoB-48 protein, a marker of intestinal chylomicrons, in differentiated Caco-2 cell monolayers. We identified hederagenin saponins that are abundant in MPP as potential anti-obesity substances. These results will contribute towards the development of functional foods with anti-obesity effects using the matoa fruit peel.  相似文献   

19.
The effects of irradiation (dose levels of 5, 7.5 and 10 kGy) on nutritive characteristics of peas (Pisum satinum L), cowpeas (Vigna unguiculata L.Walp), lentils (Lens culinaris Med), kidneybeans (Phaseolus vulgaris L), and chickpeas (Cicer arietinum L) were examined. Analyses included proximate composition, levels of anti-nutrients (phytic acid, tannins), available lysine (AL), in vitro protein digestibility (IVPD), and protein efficiency ratio (PER) in the growing rat. The results showed that moisture, crude protein, crude fat, crude fiber, and ash were unchanged by the irradiation. Radiation processing significantly (p<0.05) reduced the levels of phytic acid (PA), tannins (TN), and AL. IVPD and PER were significantly enhanced in a dose-dependent manner, relative to unirradiated control samples, for all legumes. The data sets for each legume exhibited high correlation coefficients between radiation dose and PA, TN, AL, IVPD, and PER. These results demonstrate the benefits of irradiation on the nutritional properties of these legumes.  相似文献   

20.
Although avocado is a superfood rich in phytochemicals with high antioxidant activities, studies on the antibacterial properties of its pulp are limited, except for seed and peel portions. In this study, three types of solvent (acetone, methanol, and diethyl ether) were used to obtain the extracts from “Maluma” avocado pulp powder prepared by infrared drying. The extracts were analyzed for total polyphenols, phytopigments (total chlorophylls and carotenoids), antioxidant activities (ferric-reducing antioxidant power (FRAP), 2,2-Diphenyl-1-picrylhydrazyl (DPPH), and 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) assays), and antibacterial activities against seven pathogens (Shigella sonnei ATCC 9290, Escherichia coli ATCC 8739, Salmonella typhi ATCC 6539, Vibrio parahaemolyticus ATCC 17802, Proteus mirabilis ATCC 25933, Staphylococcus aureus ATCC 6538, and Bacillus cereus ATCC 11778). The results showed that the acetone solvent could extract the highest polyphenols and chlorophylls with the highest antioxidant activity in terms of ABTS and DPPH assays. In contrast, diethyl ether exhibited the most significant content of carotenoids and FRAP values. However, the methanol extract was the best solvent, exerting the strongest antibacterial and meaningful antioxidant activities. For the bacterial activities, Gram-positive pathogens (Bacillus cereus and Staphylococcus aureus) were inhibited more efficiently by avocado extracts than Gram-negative bacteria. Therefore, the extracts from avocado powder showed great potential for applications in food processing and preservation, pharmaceuticals, and cosmetics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号