首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The five‐coordinate ruthenium N‐heterocyclic carbene (NHC) hydrido complexes [Ru(IiPr2Me2)4H][BArF4] ( 1 ; IiPr2Me2=1,3‐diisopropyl‐4,5‐dimethylimidazol‐2‐ylidene; ArF=3,5‐(CF3)2C6H3), [Ru(IEt2Me2)4H][BArF4] ( 2 ; IEt2Me2=1,3‐diethyl‐4,5‐dimethylimidazol‐2‐ylidene) and [Ru(IMe4)4H][BArF4] ( 3 ; IMe4=1,3,4,5‐tetramethylimidazol‐2‐ylidene) have been synthesised following reaction of [Ru(PPh3)3HCl] with 4–8 equivalents of the free carbenes at ambient temperature. Complexes 1 – 3 have been structurally characterised and show square pyramidal geometries with apical hydride ligands. In both dichloromethane or pyridine solution, 1 and 2 display very low frequency hydride signals at about δ ?41. The tetramethyl carbene complex 3 exhibits a similar chemical shift in toluene, but shows a higher frequency signal in acetonitrile arising from the solvent adduct [Ru(IMe4)4(MeCN)H][BArF4], 4 . The reactivity of 1 – 3 towards H2 and N2 depends on the size of the N‐substituent of the NHC ligand. Thus, 1 is unreactive towards both gases, 2 reacts with both H2 and N2 only at low temperature and incompletely, while 3 affords [Ru(IMe4)42‐H2)H][BArF4] ( 7 ) and [Ru(IMe4)4(N2)H][BArF4] ( 8 ) in quantitative yield at room temperature. CO shows no selectivity, reacting with 1 – 3 to give [Ru(NHC)4(CO)H][BArF4] ( 9 – 11 ). Addition of O2 to solutions of 2 and 3 leads to rapid oxidation, from which the RuIII species [Ru(NHC)4(OH)2][BArF4] and the RuIV oxo chlorido complex [Ru(IEt2Me2)4(O)Cl][BArF4] were isolated. DFT calculations reproduce the greater ability of 3 to bind small molecules and show relative binding strengths that follow the trend CO ? O2 > N2 > H2.  相似文献   

2.
This article deals with the hitherto unexplored metal complexes of deprotonated 6,12‐di(pyridin‐2‐yl)‐5,11‐dihydroindolo[3,2‐b]carbazole (H2L). The synthesis and structural, optical, electrochemical characterization of dimeric [{RuIII(acac)2}2(μ‐L.?)]ClO4 ([ 1 ]ClO4, S=1/2), [{RuII(bpy)2}2(μ‐L.?)](ClO4)3 ([ 2 ](ClO4)3, S=1/2), [{RuII(pap)2}2(μ‐L2?)](ClO4)2 ([ 4 ](ClO4)2, S=0), and monomeric [(bpy)2RuII(HL?)]ClO4 ([ 3 ]ClO4, S=0), [(pap)2RuII(HL?)]ClO4 ([ 5 ]ClO4, S=0) (acac=σ‐donating acetylacetonate, bpy=moderately π‐accepting 2,2’‐bipyridine, pap=strongly π‐accepting 2‐phenylazopyridine) are reported. The radical and dianionic states of deprotonated L in isolated dimeric 1 +/ 2 3+ and 4 2+, respectively, could be attributed to the varying electronic features of the ancillary (acac, bpy, and pap) ligands, as was reflected in their redox potentials. Perturbation of the energy level of the deprotonated L or HL upon coordination with {Ru(acac)2}, {Ru(bpy)2}, or {Ru(pap)2} led to the smaller energy gap in the frontier molecular orbitals (FMO), resulting in bathochromically shifted NIR absorption bands (800–2000 nm) in the accessible redox states of the complexes, which varied to some extent as a function of the ancillary ligands. Spectroelectrochemical (UV/Vis/NIR, EPR) studies along with DFT/TD‐DFT calculations revealed (i) involvement of deprotonated L or HL in the oxidation processes owing to its redox non‐innocent potential and (ii) metal (RuIII/RuII) or bpy/pap dominated reduction processes in 1 + or 2 2+/ 3 +/ 4 2+/ 5 +, respectively.  相似文献   

3.
《Polyhedron》2001,20(22-23):2829-2840
The complexes [M(L1R)2](BF4)2 (M=Ni, Co; L1R=2,6-dipyrazol-1-ylpyridine [L1H], 2,6-bis-{3-iso-propylpyrazol-1-yl}pyridine [L1Pri], 2,6-bis-{3-phenylpyrazol-1-yl}pyridine [L1Ph], 2,6-bis-{3-[2,4,6-trimethylphenyl]pyrazol-1-yl}pyridine [L1Mes]) and [M(L2)2](BF4)2 (M=Ni, Co; L2=2-{3-[2,4,6-trimethylphenyl]pyrazol-1-yl}-6-{5-[2,4,6-trimethylphenyl]pyrazol-1-yl}pyridine) have been prepared. Single crystal structure determinations of [M(L1H)2](BF4)2 (M=Ni, Co) and solvates of [Ni(L1Mes)2](BF4)2, [Co(L1Mes)2](ClO4)2 and [Co(L2)2](BF4)2 all show six-coordinate metal centres with local near-D2d symmetry. The L1Mes and L2 mesityl substituents have only a small effect on the MN{pyrazole} (M=Ni, Co) bond lengths in these compounds. The dd spectra of the complexes show that L1Mes is a significantly better donor ligand than L1H, L1Pri or L1Ph, and that L1Pri is a weaker ligand than might be expected purely on inductive grounds. A combination of UV–Vis/NIR, EPR, NMR and magnetic measurements have demonstrated that all the Co(II) compounds are high-spin in the solid state and in solution at 290 K.  相似文献   

4.
Mononuclear and dinuclear Ru(II) complexes cis-[Ru(κ2-dppm)(bpy)Cl2] (1), cis-[Ru(κ2-dppe)(bpy)Cl2] (2) and [Ru2(bpy)2(μ-dpam)2(μ-Cl)2](Cl)2 ([3](Cl)2) were prepared from the reactions between cis(Cl), cis(S)-[Ru(bpy)(dmso-S)2Cl2] and diphosphine/diarsine ligands (bpy = 2,2′-bipyridine; dppm = 1,1-bis(diphenylphosphino)methane; dppe = 1,2-bis(diphenylphosphino)ethane; dpam = 1,1-bis(diphenylarsino)methane). While methoxy-substituted ruthenafuran [Ru(bpy)(κ2-dppe)(C^O)]+ ([7]+; C^O = anionic bidentate [C(OMe)CHC(Ph)O] chelate) was obtained as the only product in the reaction between 2 and phenyl ynone HC≡C(C=O)Ph in MeOH, replacing 2 with 1 led to the formation of both methoxy-substituted ruthenafuran [Ru(bpy)(κ2-dppm)(C^O)]+ ([4]+) and phosphonium-ring-fused bicyclic ruthenafuran [Ru(bpy)(P^C^O)Cl]+ ([5]+; P^C^O = neutral tridentate [(Ph)2PCH2P(Ph)2CCHC(Ph)O] chelate). All of these aforementioned metallafuran complexes were derived from Ru(II)–vinylidene intermediates. The potential applications of these metallafuran complexes as anticancer agents were evaluated by in vitro cytotoxicity studies against cervical carcinoma (HeLa) cancer cell line. All the ruthenafuran complexes were found to be one order of magnitude more cytotoxic than cisplatin, which is one of the metal-based anticancer agents being widely used currently.  相似文献   

5.
Voltammetric studies reveal that, like [Ru2Cl4(PPh3)4(CO)], triply-bridged complexes [Ru2Cl4L5] (L = PClPh2, PMePh2, PEt2Ph) are reversibly oxidized to [Ru2Cl4L5]+. The mixed valence complexes [Ru2Cl5L3Y] (L = PPh3, P(tol)3; Y = CO, CS) undergo a corresponding reduction to [Ru2Cl5L3Y]?; whereas [Ru2Cl5L4] (L = PEt2Ph, As(tol)3) and [Ru2Cl6(AsPh3)3] are both reduced and oxidised in reversible one-electron steps. For the bridging (RuCl3Ru)z+ moiety, the redox series z = 1, 2, 3, 4 is established.  相似文献   

6.
The synthesis of dinuclear ruthenium alkenyl complexes with {Ru(CO)(PiPr3)2(L)} entities (L=Cl in complexes Ru2-3 and Ru2-7 ; L=acetylacetonate (acac) in complexes Ru2-4 and Ru2-8 ) and with π-conjugated 2,7-divinylphenanthrenediyl ( Ru2-3 , Ru2-4 ) or 5,8-divinylquinoxalinediyl ( Ru2-7 , Ru2-8 ) as bridging ligands are reported. The bridging ligands are laterally π-extended by anellating a pyrene ( Ru2-7 , Ru2-8 ) or a 6,7-benzoquinoxaline ( Ru2-3 , Ru2-4 ) π-perimeter. This was done with the hope that the open π-faces of the electron-rich complexes will foster association with planar electron acceptors via π-stacking. The dinuclear complexes were subjected to cyclic and square-wave voltammetry and were characterized in all accessible redox states by IR, UV/Vis/NIR and, where applicable, by EPR spectroscopy. These studies signified the one-electron oxidized forms of divinylphenylene-bridged complexes Ru2-7 , Ru2-8 as intrinsically delocalized mixed-valent species, and those of complexes Ru2-3 and Ru2-4 with the longer divinylphenanthrenediyl linker as partially localized on the IR, yet delocalized on the EPR timescale. The more electron-rich acac congeners formed non-conductive 1 : 1 charge-transfer (CT) salts on treatment with the F4TCNQ electron acceptor. All spectroscopic techniques confirmed the presence of pairs of complex radical cations and F4TCNQ.− radical anions in these CT salts, but produced no firm evidence for the relevance of π-stacking to their formation and properties.  相似文献   

7.
The mixed-valence 24-vanadophosphate (1) has been synthesized and characterized in the solid state by IR, magnetism, EPR, XPS, and elemental analysis. Single-crystal X-ray analysis was carried out on (Na-1), which crystallizes in the triclinic system, space group , with a = 17.168(3) ?, b = 18.1971(14) ?, c = 20.1422(13) ?, α = 114.753(3)°, β = 99.390(4)°, γ = 95.124(4)°, and Z = 2. Polyanion 1 has an unusual, open structure composed of 2 RuIIIO6 octahedra, 2 VIVO6 octahedra, 14 VVO5 square-pyramids, 8 VVO4 tetrahedra, and 2 PO4 tetrahedra which are all directly linked via edges and corners. The outer surface of 1 is decorated with six RuII(dmso)3 groups. XPS studies on Na-1 confirm the presence of 2 RuIII and 6 RuII as well as 22 VV and 2 VIV centers. Magnetic susceptibility data on Na-1 show that the VIV–RuIII pairs are coupled antiferromagnetically, with J 1 = −13 K and J 2 ∼ −3 K. We did not detect any peak in our EPR measurements on Na-1, thus supporting the conclusion that Na-1 is diamagnetic in its ground state. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. In Memoriam Prof. F. A. Cotton  相似文献   

8.
Abstract

The triply halide-bridged binuclear complexes [Ru2Cl5(CO)(AsPh3)3] (AsPh3 = triphenylarsine), [Ru2Cl5(CO)(PPh3)2(AsPh3)] (PPh3 = triphenylphosphine), [Ru2Cl5(CO)(AsPh3)2(PPh3)], [Ru2 Br5(CO)(PPh3)3], [Ru2Cl5(CO)(P{p-tol}3)2(PPh3)] (P{p-tol}3 = tri-p-tolylphosphine) and [Ru2 Br2Cl3(PPh3)2(AsPh3)] were prepared from the precursor compounds ttt-[RuX2(CO)2(P)2] (X = Cl or Br) and [RuY3(P')2S]·S (Y = Cl or Br; P=PPh3, AsPh3 or P{p- tol}3 and P' = AsPh3 or PPh3; S=DMA or MeOH, where DMA = N,N'-dimethylacetamide). The molecular structures of the binuclear complexes [Ru2Cl5(CO)(AsPh3)3] (P21/c), [Ru2Br5(CO)(PPh3)3] (P21/c) and ttt-[RuCl2(CO)2(PPh3)2] (P1) were determined by X-ray diffraction methods. The complexes are always formed by two Ru atoms bridged through three halide anions, two of which are × type (from the RuII precursor) and the other is Y type (from the rutheniumIII precursor) confirming our previously suggested mechanism for obtaining this class of complexes. The RuII atom is also coordinated to a carbon monoxide molecule and two P ligands from the ttt-starting isomer whereas the RuIII atom is bonded to two non-bridging Y halides and one P' molecule. The presence of RuIII was confirmed by EPR data, a technique that was also useful to suggest the symmetry of the complexes. The absence of intervalence charge-transfer transitions (IT) in the near infrared spectrum confirms that the binuclear complexes have localized valence. The IR spectra of the complexes show; (CO) bands close to 1970 cm?1 and ν(Ru-Cl) or(Ru-Br) bands at about 230–380 cm?1 corresponding to halides at terminal or bridged positions. Two widely separated redox processes, RuII/RuII←RuII/RuIII→RuIII/RuIII, were observed by cyclic voltammetry and differential pulse voltammetry.  相似文献   

9.
The reaction of Ru3(CO)10(dotpm) ( 1 ) [dotpm = (bis(di‐ortho‐tolylphosphanyl)methane)] and one equivalent of L [L = PPh3, P(C6H4Cl‐p)3 and PPh2(C6H4Br‐p)] in refluxing n‐hexane afforded a series of derivatives [Ru3(CO)9(dotpm)L] ( 2 – 4 ), respectively, in ca. 67–70 % yield. Complexes 2 – 4 were characterized by elemental analysis (CHN), IR, 1H NMR, 13C{1H} NMR and 31P{1H} NMR spectroscopy. The molecular structures of 2 , 3 , and 4 were established by single‐crystal X‐ray diffraction. The bidentate dotpm and monodentate phosphine ligands occupy equatorial positions with respect to the Ru triangle. The effect of substitution resulted in significant differences in the Ru–Ru and Ru–P bond lengths.  相似文献   

10.
The Ru(II) phenyl complex TpRu(PMe3)(NCMe)Ph {Tp = hydridotris(pyrazolyl)borate} reacts with isonitriles to form complexes of the type TpRu(PMe3)(CNR)Ph (R = tBu, CH2Ph, CH2CH2Ph). Neither thermal nor photolytic reactions of these systems with excess isonitrile and benzene resulted in the production of corresponding imines. DFT studies that probed the energetics of the desired catalytic transformations revealed that (Tab)Ru(PH3)(CNCH2CH2Ph)Ph {Tab = tris(azo)borate} is the most stable species in a proposed catalytic cycle. Exclusive of calculated transition states, the highest points on the calculated free energy surface are 34 kcal/mol, for (Tab)Ru(PH3)(o2-C,C-CNCH2CH2Ph)Ph {relative to the starting material (Tab)Ru(PH3)(CNCH2CH2Ph)Ph}, and 27 kcal/mol for the C-H activation product (Tab)Ru(PH3)(o-C6H4CH2CH2NC) and benzene. The substantial increases in free energy result primarily from the loss of the stable ruthenium-η1-isonitrile interaction.  相似文献   

11.
The reactions of phosphonium‐substituted metallabenzenes and metallapyridinium with bis(diphenylphosphino)methane (DPPM) were investigated. Treatment of [Os{CHC(PPh3)CHC(PPh3)CH}Cl2(PPh3)2]Cl with DPPM produced osmabenzenes [Os{CHC(PPh3)CHC(PPh3)CH}Cl2{(PPh2)CH2(PPh2)}]Cl ( 2 ), [Os{CHC(PPh3)CHC(PPh3)CH}Cl{(PPh2)CH2(PPh2)}2]Cl2 ( 3 ), and cyclic osmium η2‐allene complex [Os{CH?C(PPh3)CH?(η2‐C?CH)}Cl2{(PPh2)CH2(PPh2)}2]Cl ( 4 ). When the analogue complex of osmabenzene 1 , ruthenabenzene [Ru{CHC(PPh3)CHC(PPh3)CH}Cl2(PPh3)2]Cl, was used, the reaction produced ruthenacyclohexadiene [Ru{CH?C(PPh3)CH?C(PPh3)CH}Cl{(PPh2)CH2(PPh2)}2]Cl2 ( 6 ), which could be viewed as a Jackson–Meisenheimer complex. Complex 6 is unstable in solution and can easily be convert to the cyclic ruthenium η2‐allene complexes [Ru{CH?C(PPh3)CH?(η2‐C?CH)}Cl{(PPh2)CH2(PPh2)}2]Cl2 ( 7 ) and [Ru{CH?C(PPh3)CH?(η2‐C?CH)}Cl2{(PPh2)CH2(PPh2)}2]Cl ( 8 ). The key intermediates of the reactions have been isolated and fully characterized, further supporting the proposed mechanism for the reactions. Similar reactions also occurred in phosphonium‐substituted metallapyridinium [OsCl2{NHC(CH3)C(Ph)C(PPh3)CH}(PPh3)2]BF4 to give the cyclic osmium η2‐allene‐imine complex [OsCl2{NH?C(CH3)C(Ph)?(η2‐C?CH)}{(PPh2)CH2(PPh2)}(PPh3)]BF4 ( 11 ).  相似文献   

12.
The unexplored ‘actor’ behavior of redox-active bis(aldimine) congener, p-phenylene-bis(picoline)aldimine (L1), towards dioxygen activation and subsequent functionalization of its backbone was demonstrated on coordination with {Ru(acac)2} (acac= acetylacetonate). Reaction under aerobic condition led to the one-pot generation of dinuclear complexes with unperturbed L1, imino-carboxamido (L2), and bis(carboxamido) (L32−)-bridged isovalent {RuII(μ-L1)RuII}, 1/ {RuIII(μ-L32−)RuIII}, 3 and mixed-valent {RuII(μ-L2)RuIII}, 2 . Authentication of the complexes along with the redox non-innocence behavior of their bridge have been validated through structure, spectroelectrochemistry and DFT calculations. Kinetic and isotope labelling experiments together with DFT analyzed transition states justified the consideration of redox shuttling at metal/L1 interface for 3O2 activation despite of the closed shell configuration of 1 (S=0) to give carboxamido derived 2 / 3 .  相似文献   

13.
The title compound, trans‐[RuIICl2(N1‐mepym)4] (mepym is 4‐methylpyrimidine, C5H6N2), obtained from the reaction of trans,cis,cis‐[RuIICl2(N1‐mepym)2(SbPh3)2] (Ph is phenyl) with excess mepym in ethanol, has fourfold crystallographic symmetry and has the four pyrimidine bases coordinated through N1 and arranged in a propeller‐like orientation. The Ru—N and Ru—Cl bond distances are 2.082 (2) and 2.400 (4) Å, respectively. The methyl group, and the N3 and Cl atoms are involved in intermolecular C—H?N and C—­H?Cl hydrogen‐bond interactions.  相似文献   

14.
The mechanism of reaction of the di-Ru-substituted polyoxometalate, {??-[(H2O)RuIII(??-OH)2RuIII(H2O)][X n+W10O36]}(8?n)?, I_X, with O2, i.e. I_X?+?O2????{??-[(·O)RuIV(??-OH)2RuIV(O·)][X n+W10O36]}(8?n)??+?2H2O, (1), was studied at the B3LYP density functional and self-consistent reaction field IEF-PCM (in aqueous solution) levels of theory. The effect of the nature of heteroatom X (where X?=?Si, P and, S) on the calculated energies and mechanism of the reaction (1) was elucidated. It was shown that the nature of X only slightly affects the reactivity of I_X with O2, which is a 4-electron oxidation process. The overall reaction (1): (a) proceeds with moderate energy barriers for all studied X??s [the calculated rate-determining barriers are X?=?Si (18.7?kcal/mol)?<?S (20.6?kcal/mol)?<?P (27.2?kcal/mol) in water, and X?=?S (18.7?kcal/mol)?<?P (21.4?kcal/mol)?<?Si (23.1?kcal/mol) in the gas phase] and (b) is exothermic [by X?=?Si [28.7 (22.1) kcal/mol]?>?P [21.4 (9.8) kcal/mol]?>?S [12.3 (5.0) kcal/mol]. The resulting $ \left\{ {\gamma - \left[ {\left( {^{ \cdot } {\text{O}}} \right) {\text{Ru}}^{\text{IV}} \left( {\mu - {\text{OH}}} \right)_{2} {\text{Ru}}^{\text{IV}} \left( {{\text{O}}^{ \cdot } } \right)} \right]\left[ {{\text{X}}^{{{\text{n}} + }} {\text{W}}_{10} {\text{O}}_{36} } \right]} \right\}^{{\left( {8 - {\text{n}}} \right) - }} $ , VI_X, complex was found to have two RuIV?=?O· units, rather than RuV?=?O units. The ??reverse?? reaction, i.e., water oxidation by VI_X is an endothermic process and unlikely to occur for X?=?Si and P, while it could occur for X?=?S under specific conditions. The lack of reactivity of VI_X biradical toward the water molecule leads to the formation of the stable [{Ru 4 IV O4(OH)2(H2O)4}[(??-XW10O36]2}m? dimer. This conclusion is consistent with our experimental findings; previously we prepared the $ \left[ {\left\{ {{\text{Ru}}_{4}^{\text{IV}} {\text{O}}_{4} ({\text{OH}})_{2} \left( {{\text{H}}_{ 2} {\text{O}}} \right)_{4} } \right\}} \right[\left( {\gamma - {\text{XW}}_{10} {\text{O}}_{36} } \right]_{2} \}^{{{\text{m}} - }} $ dimers for X?=?Si (m?=?10) [Geletii et al. in Angew Chem Int Ed 47:3896?C3899, 2008 and J Am Chem Soc 131:17360?C17370, 2009] and P (m?=?8) [Besson et al. in Chem Comm 46:2784?C2786, 2010] and showed them to be very stable and efficient catalysts for the oxidation of water to O2.  相似文献   

15.
Mg2Ru2Cl10O·16H2O {dimagnesium μ‐oxo‐bis­[penta­chloro­ruthenate(IV)] hexa­deca­hydrate} crystallizes in the monoclinic system (space group P21/c). The structure consists of layers of [Ru2Cl10O]4− anions, [Mg(H2O)6]2+ cations and water mol­ecules stacked along the a axis. Only the O atom bonded to Ru occupies the 2a site with symmetry. All the other atoms occupy general 4e sites. The crystal structure is stabilized by O—H⋯O and O—H⋯Cl inter­actions.  相似文献   

16.
Complexes [{Ru(CO)Cl(PiPr3)2}2(μ‐2,5‐(CH?CH)2cC4H2E] (E=NR; R=C6H4‐4‐NMe2 ( 10 a ), C6H4‐4‐OMe ( 10 b ), C6H4‐4‐Me ( 10 c ), C6H5 ( 10 d ), C6H4‐4‐CO2Et ( 10 e ), C6H4‐4‐NO2 ( 10 f ), C6H3‐3,5‐(CF3)2 ( 10 g ), CH3 ( 11 ); E=O ( 12 ), S ( 13 )) are discussed. The solid state structures of four alkynes and two complexes are reported. (Spectro)electrochemical studies show a moderate influence of the nature of the heteroatom and the electron‐donating or ‐withdrawing substituents R in 10 a – g on the electrochemical and spectroscopic properties. The CVs display two consecutive one‐electron redox events with ΔE°′=350–495 mV. A linear relationship between ΔE°′ and the σp Hammett constant for 10 a–f was found. IR, UV/Vis/NIR and EPR studies for 10 +– 13 + confirm full charge delocalization over the {Ru}CH?CH‐heterocycle‐CH?CH{Ru} backbone, classifying them as Class III systems according to the Robin and Day classification. DFT‐optimized structures of the neutral complexes agree well with the experimental ones and provide insight into the structural consequences of stepwise oxidations.  相似文献   

17.
The clectrochemical behaviour of the complexes [RuII(L)(CO)2Cl2], [RuII(L)(CO)Cl3][Me4N] and [RuII(L)(CO)2(CH3CN)2][CF3SO3]2 (L = 2,2′-bipyridine or 4,4′-isopropoxycarbonyl-2,2′-bipyridine) has been investigated in CH3CN. The oxidation of [Ru(L)(CO)2Cl2] produces new complexes [RuIII(L)(CO)(CH3CN)2Cl]2+ as a consequence of the instability of the electrogenerated transient RuIII species [RuIII(L)(CO)2Cl2]+. In contrast, the oxidation of [RuII(L)(CO)Cl3][Me4N] produces the stable [RuIII(L)(CO)Cl3] complex. In contrast [RuII(L)(CO)2(CH3CN)2][CF3SO3]2 is not oxidized in the range up to the most positive potentials achievable. The reduction of [RuII(L)(CO)2Cl2] and [RuII(L)(CO)2(CH3CN)2][CF3SO3]2 results in the formation of identical dark blue strongly adherent electroactive films. These films exhibit the characteristics of a metal-metal bond dimer structure. No films are obtained on reduction of [RuII(L)(CO)Cl3][Me4N]. The effect of the substitution of the bipyridine ligand by electron-withdrawing carboxy ester groups on the electrochemical behaviour of all these complexes has also been investigated.  相似文献   

18.
Interaction of [Ru(NO)Cl3(PPh3)2] with K[N(R2PS)2] in refluxing N,N-dimethylformamide afforded trans-[Ru(NO)Cl{N(R2PS)2}2] (R = Ph (1), Pri (2)). Reaction of [Ru(NO)Cl3(PPh3)2] with K[N(Ph2PSe)2] led to formation of a mixture of trans-[Ru(NO)Cl{N(Ph2PSe)2}2] (3) and trans-[Ru(NO)Cl{N(Ph2PSe)2}{Ph2P(Se)NPPh2}] (4). Reaction of Ru(NO)Cl3 · xH2O with K[N(Ph2PO)2] afforded cis-[Ru(NO)(Cl){N(Ph2PO)2}2] (5). Treatment of [Rh(NO)Cl2(PPh3)2] with K[N(R2PQ)2] gave Rh(NO){N(R2PQ)2}2] (R = Ph, Q = S (6) or Se (7); R = Pri, Q = S (8) or Se (9)). Protonation of 8 with HBF4 led to formation of trans-[Rh(NO)Cl{HN(Pri2PS)2}2][BF4]2 (10). X-ray diffraction studies revealed that the nitrosyl ligands in 2 and 4 are linear, whereas that in 9 is bent with the Rh–N–O bond angle of 125.7(3)°.  相似文献   

19.
A porous silicate is obtained from octa-anionic cage-like poly-silicate (PS) and Ru3+ cations in an ethanol-based layer-by-layer assembly process. Electrochemical experiments (voltammetry and impedance spectroscopy) confirm the formation of redox-active ruthenium centers in the form of hydrous ruthenium oxide throughout the film deposit. Oxidation of Ru(III) to Ru(IV) at a potential below 0.5 V vs saturated Calomel electrode (SCE) is reversible, but a potential positive of 0.5 V vs SCE is associated with an irreversible change in reactivity, which is characteristic for very small hydrous ruthenium oxide nanoparticles. Further voltammetric experiments are performed in aqueous phosphate buffer solutions, and the effects of number of layers, scan rate, and pH are investigated. Three aqueous redox systems are studied in contact with the PS–Ru3+ films. The reduction of cationic methylene blue adsorbed onto the negative surface of the nanocomposite silicate is shown to occur, although most of the bound methylene blue appears to be electrochemically inactive either bound to silicate or buried into small pores. The PS–Ru3+-catalyzed oxidations of hydroquinone and arsenite(III) are investigated. Scanning electron microscopy images show that a macroscopically uniform porous surface is formed after deposition of 50 layers of the PS–Ru3+ nanocomposite. However, atomic force microscopy images demonstrate that in the initial deposition stages, irregular island growth occurs. The average rate of thickness increase for PS–Ru3+ nanocomposite films is 6 nm per deposition cycle.  相似文献   

20.
Two series of diorganotin(IV) dialkyldithiophosphates, [RR′Sn{SSP(OR″)2}2](R = Me or Et; R′= Ph; R″ = Et, Prn, Pri or Bun) and [RR′Sn(Cl){SSP(OR″)2}] (R = R′= Me, Et or Ph; R″ = Ph; R″ = Et, Pri or Bun) were prepared and characterised by i.r. and NMR (1H, 13C, 31P, 199Sn) spectroscopy. The NMR data indicate five and six coordinate geometries for [RR′Sn(Cl){SSP(OR″)2}] and [RR′Sn{SSP(OR″)2}2] complexes, respectively. The chloro complexes showed 2J (PSn) whereas such couplings were not observed in the spectra of [RR′Sn{SSP(OR″)2}2].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号