首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Tadeusz Wibig 《中国物理C(英文版)》2021,45(8):085001-085001-13
Extensive Air Showers (EAS) induced by cosmic ray particles of very low energies, owing to the significantly steep cosmic ray energy spectrum, dominate the secondary particle flux measured by single detectors and small shower arrays. Such arrays connected in extended networks can be used to determine potentially interesting spatial correlations between showers, which may shed new light on the nature of ultra high-energy cosmic rays. The quantitative interpretation of showers recorded by small local arrays requires a methodology that differs from that used by ordinary large EAS arrays operating in the "knee" region and above. We present "small EAS generator," a semi-analytical method for integrating cosmic ray spectra over energies of interest and summing over the mass spectra of primary nuclei in arbitrary detector configurations. Furthermore, we provide results on the EAS electron and muon fluxes and particle density spectra.  相似文献   

2.
This paper reports on the results of measurements performed in the course of the ATIC-2 balloon experiment (2002–2003) for the energy spectra of particles (such as protons; He, C, O, Ne, Mg, Si, and Fe nuclei; and some groups of nuclei) and the all-particle energy spectrum in primary cosmic rays at energies ranging from 50 GeV to 200 TeV. The conclusion is drawn that the energy spectra of protons and helium nuclei differ substantially (the spectrum of protons is steeper) and that the shape of the energy spectra of protons and heavy nuclei cannot be described by a power function.  相似文献   

3.
The extensive air shower (EAS) muon number spectrum is obtained with increased statistics using the central muon detector of the EAS MSU array, which records muons with energies above 10 GeV. The dependence of the mass composition of primary cosmic rays on the energy is considered. The conclusion is confirmed that for energies from 3 × 1015 eV (the primary energy spectrum knee) up to 1017 eV a change in the composition associated with an increase in the proportion of heavy nuclei occurs; however, after the energy of 1017 eV, the proportion of heavy nuclei begins to decrease and the composition becomes lighter. A comparison with similar data from other experiments is conducted. The existence of an additional component of cosmic rays is confirmed; earlier an indication of its presence was derived from data on the EAS electron number spectrum.  相似文献   

4.
Numerous experimental data on cosmic rays sensitive to the spectrum of primary cosmic rays were analyzed in the energy range E>1 TeV. They proved to be incompatible with the pure power-law spectrum of primary particles. The spectral index of the proton spectrum is derived from the data considered. It was found to be 0.4±0.1 greater than for the nuclei with Z≥2. Therefore, the flux of galactic cosmic rays consisting of protons and nuclei with Z≥2 cannot be described by a unified power law in the energy range 0.1–103 TeV.  相似文献   

5.
B. Forghan 《中国物理C(英文版)》2015,39(6):063105-063105
In this paper, the one-loop self energy of λφ3 theory is calculated by using Krein regularization in four and six dimensions and the result, which is finite, is compared with the conventional result of λφ3 theory in Hilbert space. The self energy is calculated in the one-loop approximation and the result is automatically regularized as a result of "Krein Regularization".  相似文献   

6.
Dark matter (DM) direct detection experiments have been setting strong limits on the DM–nucleon scattering cross section at the DM mass above a few GeV, but leave large parameter spaces unexplored in the low mass region. DM is likely to be scattered and boosted by relativistic cosmic rays in the expanding universe if it can generate nuclear recoils in direct detection experiments to offer observable signals. Since low energy threshold detectors using Germanium have provided good constraints on ordinary halo GeV-scale DM, it is necessary to re-analyze 102.8 kg\begin{document}$ \times $\end{document}day data in the CDEX-10 experiment assuming that DM is boosted by cosmic rays. For the DM mass range 1 keV \begin{document}$ <m_\chi < $\end{document} 1 MeV and the effective distance within 1 kpc, we reach an almost flat floor limit at \begin{document}$ 8.32\times10^{-30} $\end{document} cm2 for the spin-independent DM–nucleon scattering cross section, at a 90% confidence level. The CDEX-10 result is able to close the gap unambiguously in the parameter space between the MiniBooNE and XENON1T constraints, which were partially hindered by the Earth attenuation effect. We also quantitatively calculate the expected neutrino floor on searching for CRBDM in future direct detection experiments using Germanium.  相似文献   

7.
The CROSS (Cosmic Rays Over Spectrum Steepening) experiment is aimed at direct measurements of masses and energies of primary cosmic ray (PCR) nuclei in the range of 1013 ? 1015 eV near the break in the PCR energy spectrum. The experimental equipment includes a balloon ionization spectrometer consisting of X-ray transition radiation generators interlaid with thin-wall proportional chambers.  相似文献   

8.
Over a period of more than 30 years, the knee in the spectrum of extensive air showers (EAS) generated by cosmic radiation has been explained in two ways: as a consequence of a cusp in the energy spectrum of primary cosmic rays or as a consequence of a change undergone by the process of multiparticle hadron production in the interactions of primary protons with nuclei of air atoms. Investigations at the Tien Shan EAS array confirm a change in the properties of showers generated by protons near the upper boundary of the atmosphere and evince the invariability of the energy spectrum of protons in the energy range 103–105 TeV.  相似文献   

9.
Supposed that all of cosmic ray particles of energy below 3×1018eV are mainly originated and accelerated in an individual explosion of the galactic supernovae(SNs).By using an isotropic diffusion propagation model,non-steady state density of the iron nucleus is investigated.Considering the effect of extra-galactic cosmic rays and the variety of the galactic cosmic ray nuclei,the statistic model of galactic cosmic rays with a reasonable distribution of the SNs in space and time can account for the spectrum of cosmic ray in the energy range of 1012—1020eV quitewell.  相似文献   

10.
Density-dependent nuclear symmetry energy is directly related to isospin asymmetry for finite and infinite nuclear systems. It is critical to determine the coefficients of symmetry energy and their related observables because they hold great importance in different areas of nuclear physics, such as the analysis of the structure of ground state exotic nuclei and neutron star studies. The ground state bulk properties of Scandium (Z = 21) and Titanium (Z = 22) nuclei are calculated, such as their nuclear binding energy (\begin{document}$ B.E. $\end{document}), quadrupole deformation (\begin{document}$ \beta_2 $\end{document}), two-neutron separation energy (\begin{document}$ S_{ {2n}} $\end{document}), differential variation in the two-neutron separation energy (\begin{document}$ {\rm d}S_{ {2n}} $\end{document}), and root-mean-square charge radius (\begin{document}$ r_{\rm ch} $\end{document}). The isospin properties, namely the coefficient of nuclear symmetry energy and its components, such as the surface and volume symmetry energy of a finite isotopic chain, from the corresponding quantities of infinite nuclear matter, are also estimated. Finally, we correlate the neutron-skin thickness with the coefficient of symmetry energy and the related observables corresponding to the isotopic chains of these nuclei. The coherent density fluctuation model (CDFM) is used to estimate the isospin-dependent properties of finite nuclei, such as symmetry energy, surface symmetry energy, and volume symmetry energy, from their corresponding component in infinite nuclear matter. The relativistic mean-field (RMF) formalism with non-linear NL3 and relativistic-Hartree-Bogoliubov theory with density-dependent DD-ME2 interaction parameters are employed in the analysis. The weight function \begin{document}$ \vert {\cal{F}}(x) \vert^{2} $\end{document} is estimated using the total density of each nucleus, which in turn is used with the nuclear matter quantities to obtain the effective symmetry energy and its components in finite nuclei. We calculate the ground state bulk properties, such as nuclear binding energy, quadrupole deformation, two-neutron separation energy, differential variation in the two-neutron separation energy, and root-mean-square charge radius, for the Sc- and Ti- isotopic chains using the non-linear NL3 and density-dependent DD-ME2 parameter sets. Furthermore, the ground state density distributions are used within the CDFM to obtain the effective surface properties, such as symmetry energy and its components, namely volume and surface symmetry energy, for both the parameter sets. The calculated quantities are used to understand the isospin dependent structural properties of finite nuclei near and beyond the drip line, which broadens the scope of discovering new magicity along the isotopic chains. A shape transition is observed from spherical to prolate near \begin{document}$ N \geq $\end{document} 44 and \begin{document}$ N \geq $\end{document} 40 for the Sc- and Ti- isotopic chains, respectively. Notable signatures of shell and/or sub-shell closures are found for the magic neutron numbers N = 20 and 28 for both isotopic chains using the nuclear bulk and isospin quantities. In addition to these, a few shell/sub-shell closure signatures are observed near the drip-line region at N = 34 and 50 by following the surface/isospin dependent observables, namely symmetry energy and its component, for both the isotopic chain of odd-A Sc- and even-even Ti- nuclei.  相似文献   

11.
An experimental system aimed at n-γ discrimination using the zero-crossing method with a φ3"× 2" BC501A liquid scintillation detector was established and tested with an Am-Be neutron source. Two-dimensional plots of energy versus zero-crossing time were obtained. The quality of n-γ discrimination was checked by the figure-of-merit (FOM), the neutron peak-to-valley ratio, and the proportion of leaked neutrons over all neutron events. The performance of n-γ discrimination in terms of FOM was compared with previous work done by other groups. The n-γ discrimination in four different energy regions with an interval of 0.1 MeV between 0.3 MeV and 0.7 MeV was studied, and the results indicate that the n-γ discrimination threshold can go down to 0.4 MeV.  相似文献   

12.
13.
Data on muon and electron components of extensive air showers (EAS) (obtained with the EAS MSU array) were used to derive the primary cosmic ray (PCR) mass composition. It is shown that for energies beyond the knee at energy 3 × 1015 eV the abundance of heavy nuclei increases with energy. But at energies above 1017 eV the abundance of light nuclei starts to grow. The primary cosmic ray spectrum in the range 1015–1018 eV is analyzed. It is shown that at energies above 1017 eV the additional component appears and it differs from the bulk of Galactic cosmic rays generated by shocks in SN remnants.  相似文献   

14.
Aiming at the observation of cosmic-ray chemical composition in the "knee" energy region, we have been developing a new type of air-shower core detector(YAC, Yangbajing Air shower Core detector array) to be set up at Yangbajing(90.522?E, 30.102?N, 4300 m above sea level, atmospheric depth: 606 g/m2) in Tibet, China.YAC works together with the Tibet air-shower array(Tibet-Ⅲ) and an underground water Cherenkov muon detector array(MD) as a hybrid experiment.Each YAC detector unit consists of lead plates of 3.5 cm thickness and a scintillation counter which detects the burst size induced by high energy particles in the air-shower cores.The burst size can be measured from 1 MIP(Minimum Ionization Particle) to 106 MIPs.The first phase of this experiment, named"YAC-Ⅱ ", consists of 16 YAC detectors each with a size of 40 cm×50 cm and distributed in a grid with an effective area of 10 m2.YAC-Ⅱ is used to check hadronic interaction models.The second phase of the experiment, called"YAC-Ⅱ ", consists of 124 YAC detectors with coverage of about 500 m2.The inner 100 detectors of 80 cm×50 cm each are deployed in a 10×10 matrix with a 1.9 m separation; the outer 24 detectors of 100 cm×50 cm each are distributed around these to reject non-core events whose shower cores are far from the YAC-Ⅱ array.YAC-Ⅱ is used to study the primary cosmic-ray composition, in particular, to obtain the energy spectra of protons, helium and iron nuclei between 5×1013eV and 1016 eV, covering the "knee" and also connected with direct observations at energies around 100 TeV.We present the design and performance of YAC-Ⅱ in this paper.  相似文献   

15.
Based on 58 million J/ψ events collected by the BESⅡ detector at the BEPC, J/ψ→ΛΛ π+π- is observed for the first time. The branching fraction is measured to be Br(J/ψ→ΛΛ π+π-)=(4.30±0.13±0.99)×10-3, excluding the decays to intermediate states, namely J/ψ→Ξ-Ξ+, J/ψ→Σ(1385)-Σ(1385)+, and J/ψ→Σ(1385)+Σ(1385)-. The branching fractions for these intermediate resonance channels are measured to be:Br(J/ψ→Ξ-Ξ+)=(0.90±0.03±0.18)×10-3, Br(J/ψ→Σ(1385)-Σ(1385)+)=(1.23±0.07±0.30)×10-3,and Br(J/ψ→Σ(1385)+Σ(1385)-)=(1.50±0.08±0.38)×10-3, respectively. The angular distribution is of the form dN/d(cosθ)α(1+αcos2θ) with α=(0.35±0.29±0.06) for J/ψ→Ξ-Ξ+, α=(-0.54±0.22±0.10) for J/ψ→Σ(1385)-Σ(1385)+, and α=(-0.35±0.29±0.06) for J/ψ→Σ(1385)+Σ(1385)-.  相似文献   

16.
In this work, we explore the potentiality of future gravitational wave (GW) and Type Ia supernovae (SNe Ia) measurements to detect cosmic opacity by comparing the opacity-free luminosity distance (LD) of GW events with the opacity-dependent LD of SNe Ia observations. The GW data are simulated from the future measurements of the ground-based Einstein Telescope (ET) and the space-borne Deci-Herz Interferometer Gravitational wave Observatory (DECIGO). The SNe Ia data are simulated from the observations of the Wide Field Infrared Survey Telescope (WFIRST) that will be collected over the next few decades. A binning method is adopted to match the GW data with the SNe Ia data at the same redshift z with a selection criterion \begin{document}$ |\Delta z|<0.005$\end{document}, and most of the available data from the GW measurements is employed to detect cosmic opacity due to improvements in the distribution of the future SNe Ia observations. Results show that the uncertainties of the constraints on cosmic opacity can be reduced to \begin{document}$ \sigma_{\epsilon}\sim 0.0041$\end{document} and 0.0014 at the \begin{document}$ 1\sigma$\end{document} confidence level (CL) for 1000 data points from the ET and DECIGO measurements, respectively. Compared with the allowable limits of intergalactic opacity obtained from quasar continuum observations, these future astronomical observations can be used to verify the cosmic opacity. In this way, GW and SNe Ia measurements can be used as important and effective tools to detect cosmic opacity in the future.  相似文献   

17.
A.Soylu 《中国物理C(英文版)》2019,43(7):074102-074102-11
Spontaneous fission(SF) with a new formula based on a liquid drop model is proposed and used in the calculation of the SF half-lives of heavy and superheavy nuclei(Z = 90–120). The predicted half-lives are in agreement with the experimental SF half-lives. The half-lives of decay(AD) for the same nuclei are obtained by using the Wentzel-Kramers-Brillouin(WKB) method together with Bohr-Sommerfeld(BS) quantization condition considering the isospin-dependent effects for the cosh potential. The decay modes and branching ratios of superheavy nuclei(Z =104-118) with experimental decay modes are obtained, and the modes are compared with the experimental ones and with the predictions found in the literature. Although some nuclei have predicted decay modes that are different from their experimental decay modes, decay modes same as the experimental ones are predicted for many nuclei. The SF and AD half-lives, branching ratios, and decay modes are obtained for superheavy nuclei(Z = 119–120) with unknown decay modes and compared with the predictions obtained in a previous study. The present results provide useful information for future experimental studies performed on both the AD and SF of superheavy nuclei.  相似文献   

18.
The energy content of the charged-Kerr(CK)spacetime surrounded by dark energy(DE)is investigated using approximate Lie symmetry methods for the differential equations.For this,we consider three different DE scenarios:cosmological constant with an equation of state parameter$ωq=-2/3,quintessence DE with an equation of state parameterωc=-1,and a frustrated network of cosmic strings with an equation of state parameterωn=-1/3.To study the gravitational energy of the CK black hole surrounded by the DE,we explore the symmetries of the 2nd-order perturbed geodesic equations.It is noticed,for all the values ofω,the exact symmetries are recovered as 2nd-order approximate trivial symmetries.These trivial approximate symmetries give the rescaling of arc length parameter s in this spacetime which indicates that the energy in the underlying spacetime has to be rescaled by a factor that depends on the black hole parameters and the DE parameter.This rescaling factor is compared with the factor of the CK spacetime found in[Hussain et al.Gen.Relativ.Gravit.(2009)]and the effects of the DE on it are discussed.It is observed that for all the three values of the equation of state parameterω,the effect of DE results in decreased energy content of the black hole spacetime,regardless of values of the charge Q,spin a and the DE parameterα.This reduction in the energy content due to the involvement of the DE favours the idea of mass reduction of black holes by accretion of DE given by[Babichev et al.Phys.Rev.Lett.(2004)].  相似文献   

19.
The properties of γ instability in rapidly rotating even-even132-138 Nd isotopes have been investigated using the pairing-deformation self-consistent total-Routhian-surface calculations in a deformation space of(β2, γ,β4). It is found that even-even134-138 Nd nuclei exhibit triaxiality in both ground and excited states, even up to high-spin states. The lightest isotope possesses a well-deformed prolate shape without a γ deformation component.The current numerical results are compared with previous calculations and available observables such as quadrupole deformation β2 and the feature of γ-band levels, showing basically a general agreement with the observed trend ofγ correlations(e.g. the pattern of the odd-even energy staggering of the γ band). The existing differences between theory and experiment are analyzed and discussed briefly.  相似文献   

20.
Results are presented from investigations of Fe-group nuclei in galactic and solar cosmic rays in the energy ranges 30–210 MeV/n and 7–210 MeV/n in various phases of the solar cycles. Spectra of Fe particles have been obtained with high energy resolution as a result of exposing PLATAN chambers, made up of layers of a polyethyelene terephthalate solid-state track detector, for between one and three years on the Salyut-6, Salyut-7, and Mir space stations, orbiting at an inclination of 51.6° to the plane of the equator and at an altitude of 350–400 km. Measurements were made of the energy spectra of Fe particles from a unique event, the series of solar flares of September 29 and October 19–29, 1989, which is the most powerful of those recorded and measured over the entire history of cosmic ray research. A modern model of particle penetration inside the Earth’s magnetosphere, developed at the Institute of Nuclear Physics at Moscow State University, is used to compare the measured spectrum with measurements made using the solid-state track detector in the HIIS experiment on the LDEF station, and with extramagnetospheric measurements made using electronic equipment on the IMP-8 satellite and the Galileo space station. It is shown that the solid-state track detector technique has advantages for obtaining the characteristics of the energy spectrum. Zh. Tekh. Fiz. 69, 94–98 (September 1999)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号