首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Membrane introduction mass spectrometry (MIMS) allows on-line monitoring of the products of photolysis (254 nm) of benzyl acetate in aqueous methanol and 3,5-dimethoxybenzyl acetate in water. The reaction mixture is continuously exposed to a silicone membrane through which analyte molecules permeate into a triple quadrupole mass spectrometer for qualitative and quantitative analysis. Ionization is achieved by either isobutane or ammonia chemical ionization, and ions characteristic of the reactant ester and its products are monitored simultaneously and continuously. Three products, benzyl methyl ether, ethylbenzene, and bibenzyl are observed in the benzyl acetate photolysis. Two products, 3,5-dimethoxybenzyl alcohol and 3,5-dimethoxyethylbenzene, are formed in the photolysis of 3,5-dimethoxybenzyl acetate. Quantitation is achieved through calibration using external standard solutions and, in the case of benzyl methyl ether, tandem mass spectrometry is used to verify product identification. During the photolysis of benzyl acetate, benzyl methyl ether and ethylbenzene are produced at onset with similar efficiencies. For the 3,5-dimethoxy ester photolysis, performed in aqueous solution, the efficiency of formation of the polar product 3,5-dimethoxybenzyl alcohol is about 300 times greater than that of the nonpolar product 3,5-dimethoxyethylbenzene. The results show that the relative reaction rates are dependent on the solvent and on the photon intensity and are consistent with earlier off-line experiments by Pincock et al. which showed that the photolysis proceeds through both ion and radical pair intermediates. To the best of our knowledge, the work reported here describes the first analysis of the photochemistry of an aralkyl ester in water and the first use of on-line mass spectrometry in a mechanistic study.  相似文献   

2.
Fabry disease (FD) is an X-linked inborn error of glycosphingolipid (GSL) metabolism, caused by a deficiency of the lysosomal -galactosidase A, which results in high levels in lysosomes and biological fluids of globotriaosylceramide (Gb3) and digalactosylceramide (Ga2), also known as galabiosylceramide. We report here a detailed study of the molecular species of GSLs in urinary samples obtained from hemizygous and heterozygous patients by use of matrix-assisted laser desorption ionisation and tandem mass spectrometry (MALDI–MS–MS). Twenty-two and fifteen molecular species were identified in the globotriaosylceramide and digalabiosylceramide series, respectively. The major sphingoid base was sphingosine (d18:1), and dihydrosphingosine (C18:0) and sphingadienine (d18:2) were also present. The molecular profiles obtained by MALDI–TOF-MS enabled us to show significant differences between GSLs composition for young, adult or atypic hemizygote and heterozygote patients. Thus, MALDI–TOF-MS and MS–MS proved a powerful tool for screening a population of patients with clinical signs suggestive of FD by direct and rapid GSL fingerprinting and identification, and for study of the biological processes occurring in glycosphingolipid accumulation.  相似文献   

3.
Palladium-catalyzed carbonylation of 3,5-dimethoxybenzyl chloride (13) with benzyl 7-hydroxyoctanoate (12) afforded benzyl 7-(3,5-dimethoxyphenylacetoxy)octanoate (6) in 70% yield, which is the precursor of Curvularin (4). The ester (12) was easily prepared from the butadiene telomer obtained by the palladium-catalyzed reaction of butadiene with acetic acid.  相似文献   

4.
Glycosphingolipids (GSLs) are major components of the outer leaflet of the cell membrane. These lipids are involved in many cell surface events and show disease‐related expression changes. GSLs could thus serve as useful targets for biomarker discovery. The GSL structure is characterized by two entities: a hydrophilic glycan and a hydrophobic ceramide moiety. Both components exhibit numerous structural variations, the combination of which results in a large diversity of GSL structures that can potentially exist. Mass spectrometry (MS) is a powerful tool for high‐throughput analysis of GSL expression analysis and structural elucidation. Yet, the assignment of GSL structures using MS data is tedious and demands highly specialized expertise. SysBioWare, a software platform developed for MS data evaluation in glycomics, was here applied for the MS analysis of human serum GSLs. The program was tuned to provide automated compositional assignment, supporting a variety of glycan and ceramide structures. Upon in silico fragmentation, the masses of predicted ions arising from cleavages in the glycan as well as the ceramide moiety were calculated, thus enabling structural characterization of both entities. Validation of proposed structures was achieved by matching in silico calculated fragment ions with those of experimental MS/MS data. These results indicate that SysBioWare can facilitate data interpretation and, furthermore, help the user to deal with large sets of data by supporting management of MS and non‐MS data. SysBioWare has the potential to be a powerful tool for high‐throughput glycosphingolipidomics in clinical applications. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
Mononuclear transition metal(II) complexes of the type M(L)2?2H2O (where M = Co, Ni, Cu, Zn) have been synthesized from uninegative Schiff base ligands (HL1–HL4) designed by condensation of 4‐fluorobenzylamine with 2‐hydroxy‐1‐naphthaldehyde/3,5‐dichlorosalicylaldehyde/3,5‐dibromosalicylaldehyde/3‐bromo‐5‐chlorosalicylaldehyde. The compounds were successfully characterized using spectroscopic and physiochemical methods together with elemental analysis. Spectroscopic elucidation indicates a monobasic bidentate nature of ligands coordinated via deprotonated phenolic oxygen and azomethine nitrogen atom which suggests an octahedral geometry around the central metal ions. The complexes and ligands were screened for their in vitro antimicrobial activity against bacterial and fungal strains, the zinc(II) complexes being more active against the tested microbial strains. Further, the metal complexes were found to be more active than the uncomplexed ligands due to chelation process and, moreover, the complexes were more active against fungal strains than bacterial strains. Cytotoxic activities of all compounds were evaluated towards human alveolar adenocarcinoma epithelial cell line (A549), human breast adenocarcinoma cell line (MCF7), human prostate cancer cell line (DU145) and one normal human lung cell line (MRC‐5) using MTT colorimetric assay with doxorubicin as a standard. The zinc complexes were most active against the cancer cell lines and also found to be less toxic against MRC‐5 normal cell line than standard doxorubicin.  相似文献   

6.
The coupling of nano high-performance liquid chromatography (nanoHPLC) with matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) via an automatic spotting roboter was developed and adapted for the first time for the analysis of complex mixtures of glycosphingolipids (GSLs). The 2,5-dihydroxybenzoic acid and 6-azo-2-thiothymine matrix systems were adjusted to concurrently meet the requirements for reproducible and homogeneous crystal formation with the liquid chromatography (LC) eluent under the variable LC solvent composition over the course gradient and high ionization efficiency of the GSL species, without the need for recrystallization. Precise adjustment of the automatic spotting parameters in terms of matrix flow rate, on-tip collection time of the matrix/LC eluent solution and the matrix spotting mode, i.e., continuous and discontinuous, was accomplished to collect individually nanoHPLC-separated species within distinct spots and consequently recover by MALDI MS screening all major and minor GSL species in the mixtures. The nanoHPLC/MALDI MS coupling protocol was developed and applied to a mixture of neutral GSLs purified from human erythrocytes and a monosialoganglioside mixture expressed by the murine MDAY-D2 cell line. Additionally, on-line nanoHPLC/MALDI doping with lithium cations of individually separated neutral GSLs was introduced to enhance data interpretation of the GSL MS pattern, while preserving the same level of information and ultimately to enhance structural assignment of components of interest. The method is demonstrated to be highly sensitive, reaching the low femtomole level of detection of individual GSL species and is highlighted as a versatile analytical tool for glycolipidomic studies. Figure Automatic LC/MALDI MS profiling of glycosphingolipids Mostafa Zarei and Stephan Kirsch contributed equally to this work.  相似文献   

7.
The crystal and mol­ecular structures of 4‐ethyl‐3,5‐dimethyl­pyrrole‐2‐carbaldehyde, C10H15NO, (I), benzyl 3,5‐dimethyl­pyrrole‐2‐carboxyl­ate, C14H15NO2, (II), benzyl 4‐acetyl‐3,5‐dimethyl­pyrrole‐2‐carboxyl­ate, C16H17NO3, (III), dimethyl 3,5‐dimethyl­pyrrole‐2,4‐dicarboxyl­ate, C10H13NO4, (IV), 4‐ethyl‐3,5‐dimethyl‐2‐(p‐tos­ylacet­yl)pyrrole, C17H21NO3S, (V), and ethyl 4‐(2‐ethoxy­carbonyl‐2‐hydroxy­acrylo­yl)‐3,5‐dimethyl­pyrrole‐2‐carboxyl­ate, C15H19NO6, (VI), were determined at 130 K. Compounds (I), (II), (IV), (V) and (VI) form hydrogen‐bonded dimers [N—H⋯O=C = 1.97 (2)–2.03 (3) Å]. Four dimers, viz. (I) and (IV)–(VI), have inversion symmetry, while the dimer of (II) has twofold symmetry. Only (III) forms polymeric chains involving hydrogen bonds between the pyrrole H atom and the acetyl carbonyl group [H⋯O = 1.97 (2) Å] and is further stabilized by CH3⋯O inter­actions (C—H⋯O = 2.28–2.49 Å). Compound (VI) was found to occur as the enol ether in the crystal.  相似文献   

8.
A method for generation of novel fluorocarbon derivatives of glycosphingolipids (GSLs) with high affinity for fluorocarbon phases has been developed, and their potential applications to mass spectrometry (MS)‐based methodologies for glycosphingolipidomics have been investigated. Sphingolipid ceramide N‐deacylase (SCDase) is used to remove the fatty acid from the ceramide moiety, after which a fluorocarbon‐rich substituent (F‐Tag) is incorporated at the free amine of the sphingoid. In initial trials, a neutral GSL, globotriaosylceramide (Gb3Cer), three purified bovine brain gangliosides, and four fungal glycosylinositol phosphorylceramides (GIPCs) were de‐N‐acylated, derivatized by prototype F‐Tags, and recovered by solid phase extraction on fluorocarbon‐derivatized silica (F‐SPE). The efficacy of SCDase treatment of GIPCs was here demonstrated for the first time. Compatibility with subsequent per‐N,O‐methylation was established for the F‐tagged Gb3 Cer and purified gangliosides, and extensive mass spectra (MS1 and MS2) consistent with all of the expected products were acquired. The potential use of F‐tagged derivatives for a comprehensive MS based profiling application was then demonstrated on a crude ganglioside mixture extracted from bovine brain. Finally, a simple trial in microarray format demonstrated fixation of F‐tagged GM1 ganglioside to a fluorous glass surface, with the glycan intact and available for interaction with a fluorescent derivative of cholera toxin B chain. The methods described thus provide a new avenue for rapid GSL recovery or cleanup, potentially compatible with a variety of platforms for mass spectrometric profiling and structure analysis, as well as parallel analysis of functional interactions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
Glycosphingolipids (GSLs) play key roles in the manifestation of infectious diseases as attachment sites for pathogens. The thin‐layer chromatography (TLC) overlay assay represents one of the most powerful approaches for the detection of GSL receptors of microorganisms. Here we report on the direct structural characterization of microbial GSL receptors by employment of the TLC overlay assay combined with infrared matrix‐assisted laser desorption/ionization orthogonal time‐of‐flight mass spectrometry (IR‐MALDI‐o‐TOF‐MS). The procedure includes TLC separation of GSL mixtures, overlay of the chromatogram with GSL‐specific bacteria, detection of bound microbes with primary antibodies against bacterial surface proteins and appropriate alkaline phosphatase labeled secondary antibodies, and in situ MS analysis of bacteria‐specific GSL receptors. The combined method works on microgram scale of GSL mixtures and is advantageous in that it omits laborious and time‐consuming GSL extraction from the silica gel layer. This technique was successfully applied to the compositional analysis of globo‐series neutral GSLs recognized by P‐fimbriated Escherichia coli bacteria, which were used as model microorganisms for infection of the human urinary tract. Thus, direct TLC/IR‐MALDI‐o‐TOF‐MS adds a novel facet to this fast and sensitive method offering a wide range of applications for the investigation of carbohydrate‐specific pathogens involved in human infectious diseases. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
1-Methyl or 1-benzyl 3,5-bis(-bromoalkyl) isocyanurates with the alkyl chain comprising 3 through 6 methylene units were synthesized by the reaction of disodium methyl and benzyl isocyanurates with ,-dibromoalkanes. The reaction of disodium methyl and benzyl isocyanurates with ethylene chlorohydrin was used to obtain 1-methyl or 1-benzyl 3,5-bis(2-hydroxyethyl) isocyanurates whose treatment with PBr3 or SOCl2 gave the corresponding 1-alkyl 3,5-bis(2-haloethyl) isocyanurates. 1-Methyl and 1-benzyl 3,5-bis-(chloromethyl) isocyanurates were prepared by treatment with SOCl2 of 1-methyl or 1-benzyl 3,5-bis(hydroxymethyl) isocyanurates obtained, in their turn, by condensation of methyl and benzyl isocyanurates with formaldehyde.  相似文献   

11.
α-Functionalized 1-benzylbenzotriazoles (3, 4 and 12), derived from the lithiation of 1-(2,3-dimethoxybenzyl)benzotriazole 2 followed by reactions with electrophiles, or from the condensation of benzyl alcohol 11 with benzotriazole, undergo formal [3 + 2] cycloadditions with styrenes upon treatment with ZnBr2 to give functionalized indans (9, 10, 13 and 14).  相似文献   

12.
《Chemistry & biology》1997,4(2):97-104
Specific types of glycosphingolipid (GSL), which are chemically detectable in normal cells, are more highly expressed in tumors. The high level of expression on the surfaces of tumor cells causes an antibody response to these GSLs, which can therefore be described as tumor-associated antigens. Some of these GSLs have been shown to be adhesion molecules involved in tumor cell metastasis, and to be modulators of signal transduction controlling tumor cell growth and motility. Tumor-associated GSL antigens have been used in the development of antitumor vaccines. GSLs and sphingolipids involved in adhesion and signaling are therefore targets for cancer therapy.  相似文献   

13.
Glycosphingolipid (GSL) is a major component of the plasma membrane in eukaryotic cells that is involved directly in a variety of immunological events via cell‐to‐cell or cell‐to‐protein interactions. In this study, qualitative and quantitative analyses of GSL‐derived glycans on endothelial cells and islets from a miniature pig were performed and their glycosylation patterns were compared. A total of 60 and 47 sialylated and neutral GSL‐derived glycans from the endothelial cells and islets, respectively, were characterized by matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF MS) and collision‐induced fragmentation using positive‐ion electrospray ionization (ESI) ion‐trap tandem mass spectrometry (MS/MS). In accordance with previous immunohistochemistry studies, the α‐Gal‐terminated GSL was not detected but NeuGc‐terminated GSLs were newly detected from miniature pig islets. In addition, the neutral GSL‐derived glycans were relatively quantified by derivatization with carboxymethyl trimethylammonium hydrazide (so called Girard's T reagent) and MALDI‐TOF MS. The structural information of the GSL‐derived glycans from pig endothelial cells and islets suggests that special attention should be paid to all types of glycoconjugates expressed on pig tissues or cells for successful clinical xenotransplantation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
Glycosphingolipids (GSLs) are amphiphilic molecules consisting of a hydrophilic carbohydrate chain and a hydrophobic ceramide moiety. They appear to be involved primarily in biological processes such as cell proliferation, differentiation, and signaling. To investigate the mechanism of brain function in more detail, a more highly sensitive method that would reveal the GSL distribution in the brain is required. In this report, we describe a simple and efficient method for mapping the distribution and localization of GSLs present in mouse brain sections using nanoparticle-assisted laser desorption/ionization imaging mass spectrometry (IMS). We have developed and tested gold nanoparticles (AuNPs) as a new matrix to maximize the detection of GSLs. A matrix of AuNPs modified with alkylamine was used to detect various GSLs, such as minor molecular species of sulfatides and gangliosides, in mouse brain sections; these GSLs were hardly detected using 2,5-dihydroxybenzoic acid (DHB), which is the conventional matrix for GSLs. We achieved approximately 20 times more sensitive detection of GSLs using AuNPs compared to a DHB matrix. We believe that our new approach using AuNPs in IMS could lead to a new strategy for analyzing basic biological mechanisms and several diseases through the distribution of minor GSLs.  相似文献   

15.
A series of N-benzylated 3,5-diakyl-2,6-diarylpiperidin-4-ones 4–8 were conveniently synthesized in significant yields of 68–88% by N-benzylation of the corresponding 2,6-diaryl-3,5-dimethylpiperidin-4-ones 1–3 using different benzyl bromides. Initially, the new piperidone 2,6-bis(4-ethoxyphenyl)-3,5-dimethylpiperidin-4-one 3 was synthesized by the condensation of 1:1:2 M ratio of 3-pentanone, ammonium acetate and para-ethoxybenzaldehyde in ethanolic medium. All the synthesized new compounds 3–8 were characterized by their analytical and spectral (IR, 1H and 13C NMR) interpretations. The stereochemistry of the new piperidone 3 was elucidated as chair conformation with an equatorial orientation of all substituents, suggested by its vicinal couplings from 1H NMR spectrum. To investigate the impact on piperidone stereochemistry as well as NMR chemical shifts, all the N-benzylated products 4–8 were compared with their corresponding precursors, and as a result, it is clearly established that all the synthesized N-benzyl piperidones exist in the chair conformation with an equatorial orientation of all the substituents at C-2, C-3, C-5, C-6 and N. Contrary to the probability all N-benzylated compounds retain the same conformation and configuration as their precursors, however, a remarkable change on the chemical shifts are observed. For the further unambiguous confirmation of stereochemistry, the 1-benzyl-3,5-dimethyl-2,6-diphenylpiperidin-4-one 4 was examined by single-crystal X-ray diffraction. The compound 4, C26H27NO, crystallized in a P-1 space group under triclinic system with unit cell dimensions a, b, c (Å) and α, β, γ (°) of 10.156(2), 11.002(2), 11.348(4) and 116.74(4), 100.81(3), 100.17(3), respectively.  相似文献   

16.
Starting from the potential anticancer drug candidate Titanocene Y {bis‐[(4‐methoxybenzyl)cyclopentadienyl]titanium(IV) dichloride}, anion exchange experiments were performed using silver malonate (1a) or silver cyclobutane‐1,1‐malonate (1b) in order to yield bis‐[(4‐methoxy‐benzyl)cyclopentadienyl] titanium(IV) malonate (2a) and bis‐[(4‐methoxy‐benzyl)cyclopentadienyl] titanium(IV) cyclobutane‐1,1‐malonate (2b). In addition, Titanocene Y was reacted with salicylic acid (3a) or 3,5‐dinitro‐salicylic acid (3b) in the presence of diethylamine to synthesize bis‐[(4‐methoxy‐benzyl)cyclopentadienyl] titanium(IV) salicylate (4a) or bis‐[(4‐methoxy‐benzyl)cyclopentadienyl] titanium(IV) 3,5‐dinitro‐salicylate (4b). These titanocenes had their cytotoxicity investigated through preliminary in vitro testing on the LLC‐PK (pig kidney epithelial) cell line in an MTT‐based assay in order to determine their IC50 values. Titanocenes 2a–b and 4a were found to have IC50 values of 74 ( ± 13) µM , 18 ( ± 5) µM and 49 ( ± 11) µM on the LLC‐PK cell line, while compound 4b was found to have lost all its cytotoxic activity on this cell line. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
To develop a new solvent-impregnated resin system for the removal of phenols from water the complex formation of triisobutylphosphine sulfide (TIBPS), tributylphosphate (TBP), and tri-n-octylphosphine oxide (TOPO) with a series of phenols (phenol, thiophenol, 3-chlorophenol, 3,5-dichlorophenol, 4-cyanophenol, and pentachlorophenol) was studied. The investigation of complex formation between the extractants and the phenols in the solvent toluene was carried out using liquid-liquid extraction, isothermal titration calorimetry (ITC), and quantum chemical modeling (B3LYP/6-311+G(d,p)//B3LYP/6-311G(d,p) and MP2/6-311++G(2d,2p)//B3LYP/6-311G(d,p)). The equilibrium constant (binding affinity, Kchem), enthalpy of complex formation (DeltaH), and stoichiometry (N) were directly measured with ITC, and the entropy of complexation (DeltaS) was derived from these results. A first screening of K chem toward phenol revealed a very high binding affinity for TOPO, and very low binding affinities for the other extractants. Modeling results showed that although 1:1 complexes were formed, the TIBPS and TBP do not form strong hydrogen bonds. Therefore, in the remainder of the research only TOPO was considered. Kchem of TOPO for the phenols in toluene increased from 1,000 to 10,000 M(-1) in the order phenol < pentachlorophenol < 3-chlorophenol < 4-cyanophenol approximately 3,5-dichlorophenol (in line with their pKa values, except for pentachlorophenol) in the absence of water, while the stoichiometric ratio remained 1:1. In water-saturated toluene, the binding affinities are lower due to co-complexation of water with the active site of the extractant. The increase in binding affinity for TOPO in the phenol series was confirmed by a detailed ab initio study, in which Delta H was calculated to range from -10.7 kcal/mol for phenol to -13.4 kcal/mol for 4-cyanophenol. Pentachlorophenol was found to behave quite differently, showing a DeltaH value of -10.5 kcal/mol. In addition, these calculations confirm the formation of 1:1 H-bonded complexes.  相似文献   

18.
Effects of substituted aryl groups on dissociations of peptide aminoketyl radicals were studied computationally for model tetrapeptide intermediates GXD?G where X was a cysteine residue that was derivatized by S‐(3‐nitrobenzyl), S‐(3‐cyanobenzyl), S‐(3,5‐dicyanobenzyl), S‐(2,3,4,5,6‐pentafluorobenzyl), and S‐benzyl groups. The aminoketyl radical was placed within the Asp amide group. Aminoketyl radicals having the S‐(3‐nitrobenzyl) group were found to undergo spontaneous and highly exothermic migration of the hydroxyl hydrogen atom onto the nitro group in conformers allowing interaction between these groups. Competing reaction channels were investigated for aminoketyl radicals having the S‐(3‐cyanobenzyl) and S‐(3,5‐dicyanobenzyl) groups, e.g. H‐atom migration to the C and N atoms of the C≡N group, migration to the C‐4 position of the phenyl ring, and dissociation of the radical‐activated N? Cα bond between the Asp and Gly residues. RRKM kinetic analysis on the combined B3LYP and ROMP2/6‐311++G(2d,p) potential energy surface indicated > 99% H‐atom transfer to the C≡N group forming a stable iminyl intermediate. The N? Cα bond dissociation was negligible. In contrast, peptides with the S‐(2,3,4,5,6‐pentafluorobenzyl) and S‐benzyl groups showed preferential N? Cα bond dissociation that outcompeted H‐atom migration to the C‐4 position and fluorine substituents in the phenyl ring. These computational results are used to suggest an alternative mechanism for the quenching effect on electron‐based peptide backbone dissociations of benzyl groups with electron‐withdrawing substitutents, as reported recently. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
Isatropolones/isarubrolones are actinomycete secondary metabolites featuring a tropolone-ring in their structures. From the isatropolone/isarubrolone producer Streptomyces sp. CPCC 204095, 7,12-dihydroisatropolone C (H2ITC) is discovered and identified as a mixture of two interchangeable diastereomers differing in the C-6 configuration. As a major metabolite in the mycelial growth period of Streptomyces sp. CPCC 204095, H2ITC can be oxidized spontaneously to isatropolone C (ITC), suggesting H2ITC is the physiological precursor of ITC. Characterization of H2ITC makes us propose dihydrotropolone-ring construction in the biosynthesis of isatropolones.  相似文献   

20.
A series of novel N-benzylcarboxamide derivatives of bicyclic compounds, 3,4-dihydropyrido[3,2-f][1,4]oxazepin-5(2H)-one and 2,3,4,5-tetrahydro-6H-pyrido[2,3-b][1,5]oxazocin-6-one, were synthesized by cyclization of N-benzyl-2-chloro-N-(2-hydroxyethyl)- [and -(3-hydroxypropyl)-] nicotinamides, respectively. Atropisomerism was observed in 5-[3,5-bis(trifluoromethyl)benzyl]-7-phenyl-2,3,4,5-tetrahydro-6H-pyrido[2,3-b][1,5]oxazocin-6-ones due to steric hindrance of the carboxamide moiety and restriction of its rotation. Cyclization of N-[3,5-bis(trifluoromethyl)benzyl]-2-chloro-N-[(2S)-3-hydroxy-2-methylpropyl]-5-methyl-4-phenylnicotinamide gave (3S)-5-[3,5-bis(trifluoromethyl)benzyl]-3,8-dimethyl-7-phenyl-2,3,4,5-tetrahydro-6H-pyrido[2,3b][1,5]oxazocin-6-one, which exists predominantly in the thermodynamically stable aR-conformer in CDCl3. This compound showed excellent NK1-antagonistic activity with IC50 value (in vitro inhibition of [125I]-Bolton-Hunter-substance P binding in human IM-9 cells) of 0.47 nM, which is ca. 200-fold more potent than that of its enantiomer, indicating that the atropisomer chirality affects NK1-receptor recognition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号