共查询到20条相似文献,搜索用时 15 毫秒
1.
《Angewandte Chemie (International ed. in English)》2017,56(4):981-986
The state‐of‐the‐art in olefin metathesis is application of N‐heterocyclic carbene (NHC)‐containing ruthenium alkylidenes for the formation of internal C=C bonds and of cyclic alkyl amino carbene (CAAC)‐containing ruthenium benzylidenes in the production of terminal olefins. A straightforward synthesis of bis(CAAC)Ru indenylidene complexes, which are highly effective in the formation of both terminal and internal C=C bonds at loadings as low as 1 ppm, is now reported. 相似文献
2.
Dirk Schoeps Dipl.‐Ing. Kristian Buhr Dipl.‐Ing. Marga Dijkstra Dr. Katrin Ebert Dr. Herbert Plenio Prof. Dr. 《Chemistry (Weinheim an der Bergstrasse, Germany)》2009,15(12):2960-2965
Retained : An N‐heterocyclic carbene with eight cyclohexyl groups (see figure) provides increased electron density for a highly active olefin metathesis catalyst as well as sufficient steric bulk to allow the efficient separation of such a complex from the organic products in the solvent‐resistant nanofiltration.
3.
Chelating Ruthenium Phenolate Complexes: Synthesis,General Catalytic Activity,and Applications in Olefin Metathesis Polymerization 下载免费PDF全文
Anna Kozłowska Dr. Maciej Dranka Prof. Janusz Zachara Eva Pump Prof. Dr. Christian Slugovc Krzysztof Skowerski Prof. Dr. Karol Grela 《Chemistry (Weinheim an der Bergstrasse, Germany)》2014,20(43):14120-14125
Cyclic Ru‐phenolates were synthesized, and these compounds were used as olefin metathesis catalysts. Investigation of their catalytic activity pointed out that, after activation with chemical agents, these catalysts promote ring‐closing metathesis (RCM), enyne and cross‐metathesis (CM) reactions, including butenolysis, with good results. Importantly, these latent catalysts are soluble in neat dicyclopentadiene (DCPD) and show good applicability in ring‐opening metathesis polymeriyation (ROMP) of this monomer. 相似文献
4.
Erin M. Leitao Stuart R. Dubberley Dr. Warren E. Piers Prof. Qiao Wu Dr. Robert McDonald Dr. 《Chemistry (Weinheim an der Bergstrasse, Germany)》2008,14(36):11565-11572
The four‐coordinate ruthenium phosphonium alkylidenes 1‐Cy and 1‐iPr , differing in the substituent on the phosphorus center, were observed to decompose thermally in the presence of 1,1‐dichloroethylene to produce [H3CPR3][Cl]. The major ruthenium‐containing product was a trichloro‐bridged ruthenium dimer that incorporates the elements of the 1,1‐dichloroethylene as a dichlorocarbene ligand and a styrenic vinyl group on the supporting NHC ligand. Spectroscopic, kinetic, and deuterium‐labeling experiments probed the mechanism of this process, which involves a rate‐limiting C–H activation of an NHC mesityl ortho methyl group. These studies provide insight into intrinsic decomposition processes of active Grubbs type olefin metathesis catalysts, pointing the way to new catalyst design directions. 相似文献
5.
6.
Tomasz Nienałtowski Paweł Szczepanik Paweł Małecki Dr. Dorota Czajkowska-Szczykowska Dr. Stefan Czarnocki Dr. Jolanta Pawłowska Dr. Anna Kajetanowicz Prof. Karol Grela 《Chemistry (Weinheim an der Bergstrasse, Germany)》2020,26(67):15708-15717
A large-scale synthesis of known Ru olefin metathesis catalyst VII featuring an unsymmetrical N-heterocyclic carbene (NHC) ligand with one 2,5-diisopropylphenyl (DIPP) and one thiophenylmethylene N-substituent is reported. The optimised procedure does not require column chromatography in any step and allows for preparation of up to 0.5 kg batches of the catalyst from simple precursors. The application profile of the obtained catalyst was studied in environmentally friendly dimethyl carbonate (DMC). Although VII exhibited low efficiency in cross-metathesis (CM) with electron-deficient partners, good to excellent results were noted for substrates featuring easy to isomerise C−C double bonds. This includes polyfunctional substrates of medicinal chemistry interest, such as analogues of psychoactive 5F-PB-22 and NM-2201 and two PDE5 inhibitors—Sildenafil and Vardenafil. Finally, a larger scale ring-closing metathesis (RCM) of a Vardenafil derivative was conducted in DMC, allowing for straightforward isolation of the expected product (23 g) in high yield and with low Ru contamination level (7.7 ppm). 相似文献
7.
Alejandro Cervantes-Reyes Dr. Frank Rominger Dr. Matthias Rudolph Prof. Dr. A. Stephen K. Hashmi 《Chemistry (Weinheim an der Bergstrasse, Germany)》2019,25(50):11745-11757
Nine- and ten-membered N-heterocyclic carbene (NHC) ligands have been developed and for the first time their gold(I) complexes were synthesized. The protonated NHC pro-ligands 2 a – h were prepared by the reaction of readily available N,N′-diarylformamidines with bis-electrophilic building blocks, followed by anion exchange. In situ deprotonation of the tetrafluoroborates 2 a – h with tBuOK in the presence of AuCl(SMe2) provided fast access to NHC-gold(I) complexes 3 – 10 . These new NHC-gold(I) complexes show very good catalytic activity in a cycloisomerization reaction (0.1 mol % catalyst loading, up to 100 % conversion) and their solid-state structures reveal high steric hindrance around the metal atom (%Vbur up to 53.0) which is caused by their expanded-ring architecture. 相似文献
8.
Hilke Burmeister Pascal Dietze Lutz Preu Julia E. Bandow Ingo Ott 《Molecules (Basel, Switzerland)》2021,26(14)
A series of ruthenium(II) complexes with N-heterocyclic carbene (NHC) ligands of the general type (arene)(NHC)Ru(II)X2 (where X = halide) was prepared, characterized, and evaluated as antibacterial agents in comparison to the respective metal free benzimidazolium cations. The ruthenium(II) NHC complexes generally triggered stronger bacterial growth inhibition than the metal free benzimidazolium cations. The effects were much stronger against Gram-positive bacteria (Bacillus subtilis and Staphylococcus aureus) than against Gram-negative bacteria (Escherichia coli, Acinetobacter baumannii, Pseudomonas aeruginosa), and all complexes were inactive against the fungus Candida albicans. Moderate inhibition of bacterial thioredoxin reductase was confirmed for selected complexes, indicating that inhibition of this enzyme might be a contributing factor to the antibacterial effects. 相似文献
9.
10.
Cationic Bis‐N‐Heterocyclic Carbene (NHC) Ruthenium Complex: Structure and Application as Latent Catalyst in Olefin Metathesis 下载免费PDF全文
Dr. Mathieu Rouen Dr. Pierre Queval Laura Falivene Jessica Allard Loïc Toupet Dr. Christophe Crévisy Frédéric Caijo Dr. Olivier Baslé Prof. Luigi Cavallo Dr. Marc Mauduit 《Chemistry (Weinheim an der Bergstrasse, Germany)》2014,20(42):13716-13721
An unexpected cationic bis‐N‐heterocyclic carbene (NHC) benzylidene ether based ruthenium complex ( 2 a ) was prepared through the double incorporation of an unsymmetrical unsaturated N‐heterocyclic carbene (U2‐NHC) ligand that bore an N‐substituted cyclododecyl side chain. The isolation and full characterization (including X‐ray diffraction studies) of key synthetic intermediates along with theoretical calculations allowed us to understand the mechanism of the overall cationization process. Finally, the newly developed complex 2 a displayed interesting latent behavior during ring‐closing metathesis, which could be “switched on” under acidic conditions. 相似文献
11.
N杂环卡宾的反应性能较高,与周期表中几乎所有的金属都能发生反应形成稳定的配合物.主要阐述了N杂环卡宾的结构与类型,其金属配合物的合成方法及在化学反应中的催化作用和应用前景. 相似文献
12.
Michał Dąbrowski Dr. Przemysław Wyrębek Dr. Damian Trzybiński Prof. Krzysztof Woźniak Prof. Karol Grela 《Chemistry (Weinheim an der Bergstrasse, Germany)》2020,26(17):3782-3794
Robust, selective, and stable in the presence of ethylene, ruthenium olefin metathesis pre-catalyst, {[3-benzyl-1-(10-phenyl-9-phenanthryl)]-2-imidazolidinylidene}dichloro(o-isopropoxyphenylmethylene)ruthenium(II), Ru-3 , bearing an unsymetrical N-heterocyclic carbene (uNHC) ligand, has been synthesized. The initiation rate of Ru-3 was examined by ring-closing metathesis and cross-metathesis reactions with a broad spectrum of olefins, showing an unprecendented selectivity. It was also tested in industrially relevant ethenolysis reactions of olefinic substrates from renewable feedstock with very good yields and selectivities. 相似文献
13.
14.
Thomas Weskamp Florian J. Kohl Wolfgang Hieringer Dieter Gleich Wolfgang A. Herrmann 《Angewandte Chemie (International ed. in English)》1999,38(16):2416-2419
Two N-heterocyclic carbene ligands at once may be one too many , at least if you intend to have highly active ruthenium catalysts for olefin metathesis. Density functional calculations recommend the replacement of the second carbene ligand in the successful ROMP catalysts 1 by coordinatively more labile ligands as in 2 or 3 . In both cases, the catalytic activity is greatly improved. 相似文献
15.
Hyunho Kim Minseop Kim Dr. Hayoung Song Prof. Eunsung Lee 《Chemistry (Weinheim an der Bergstrasse, Germany)》2021,27(11):3849-3854
The synthesis of ambiphilic N-heterocyclic carbene ligand, indol-2-ylidene (IdY, A ), is described. A series of indolenium precursors ( 2 a – f ) were prepared on a gram scale in good yields. Trapping experiments with elemental selenium, [RhCl(cod)]2 and CuCl provided the expected carbene adducts. Further computational and spectroscopic studies supported the ambiphilicity of IdY, which lies between cyclic (alkyl)(amino)carbenes (CAAC-5) and cyclic (amino)(aryl)carbene (CAArC). The copper complexes ( 6 ) show high percent buried volume (% Vbur = 58.1) and allow for carboboration of terminal alkynes within 30 minutes in a demonstration of synthetic utility with good yields and high regioselectivity. 相似文献
16.
Z‐Selective Cross Metathesis with Ruthenium Catalysts: Synthetic Applications and Mechanistic Implications 下载免费PDF全文
Dr. Myles B. Herbert Prof. Dr. Robert H. Grubbs 《Angewandte Chemie (International ed. in English)》2015,54(17):5018-5024
Olefin cross metathesis is a particularly powerful transformation that has been exploited extensively for the formation of complex products. Until recently, however, constructing Z‐olefins using this methodology was not possible. With the discovery and development of three families of ruthenium‐based Z‐selective catalysts, the formation of Z‐olefins using metathesis is now not only possible but becoming increasingly prevalent in the literature. In particular, ruthenium complexes containing cyclometalated NHC architectures developed in our group have been shown to catalyze various cross metathesis reactions with high activity and, in most cases, near perfect selectivity for the Z‐isomer. The types of cross metathesis reactions investigated thus far are presented here and explored in depth. 相似文献
17.
18.
Miles A. Dunbar Shawna L. Balof Lawrence J. LaBeaud Bing Yu Dr. Andrew B. Lowe Dr. Edward J. Valente Dr. Hans‐Jörg Schanz Dr. 《Chemistry (Weinheim an der Bergstrasse, Germany)》2009,15(45):12435-12446
The effect of the addition of H3PO4 on the ROMP activity of cyclooctene (COE) with first‐ [Cl2(PCy3)2Ru?CHPh] and second‐generation [(H2IMes)Cl2(PCy3)Ru?CHPh] Grubbs’ catalysts 1 and 4 (Cy=cyclohexyl, Ph=phenyl, Mes=2,4,6‐trimethylphenyl (mesityl)), their inhibited mixtures with 1‐methylimidazole (MIM), as well as their isolated bis‐N,N′‐dimethylaminopyridine (DMAP) derivatives [Cl2(PCy3)(DMAP)2Ru?CHPh)] ( 5 b ) and [Cl2(H2IMes)(DMAP)2Ru?CHPh] ( 7 b ) (DMAP=dimethylaminopyridine), a novel catalyst, has been investigated. The studies include the determination of their initiation rates, as well as a determination of the molecular weights and molecular weight distributions of the polymers obtained with these catalysts and catalyst mixtures from the exo‐7‐oxanorbornene derivative 11 . The structure of catalyst 7 b was confirmed by means of X‐ray diffraction. All N‐donor‐bearing catalysts or N‐donor‐containing catalyst mixtures not only exhibited elevated activity in the presence of acid, but also increased initiation rates. Using the reversible inhibition/activation protocol with MIM and H3PO4 enabled us to conduct controlled ROMP with catalyst 4 producing the isolated exo‐7‐oxanorbornene‐based polymer 12 with predetermined molecular weights and narrow molecular weight distributions. This effect was based on fast and efficient catalyst initiation in contrast to the parent catalyst 4 . Hexacoordinate complex 5 b also experienced a dramatic increase in initiation rates upon acid‐addition and the ROMP reactions became well‐controlled in contrast to the acid‐free reaction. In contrast, complex 7 b performs well‐controlled ROMP in the absence of acid, whereas the polymerization of the same monomer becomes less controlled in the presence of H3PO4. The closer evaluation of catalysts 5 b and 7 b demonstrated that their initiation rates exhibit a linear dependency on the substrate concentration in contrast to catalysts 1 and 4 . As a consequence, their initiation rates are determined by an associative step, not a dissociative step as seen for catalysts 1 and 4 . A feasible associative metathesis initiation mechanism is proposed. 相似文献
19.
Thi Kim Hoang Trinh Dr. Jean-Pierre Malval Dr. Fabrice Morlet-Savary Dr. Julien Pinaud Dr. Patrick Lacroix-Desmazes Dr. Corine Reibel Dr. Valérie Héroguez Dr. Abraham Chemtob 《Chemistry (Weinheim an der Bergstrasse, Germany)》2019,25(39):9242-9252
In the search of smarter routes to control the conditions of N-heterocyclic carbene (NHCs) formation, a two-component air-stable NHC photogenerating system is reported. It relies on the irradiation at 365 nm of a mixture of 2-isopropylthioxanthone (ITX) with 1,3-bis(mesityl)imidazoli(ni)um tetraphenylborate. The photoinduced liberation of NHC is evidenced by reaction with a mesitoyl radical to form an NHC-radical adduct detectable by electron spin resonance spectroscopy. The NHC yield can be determined by 1H NMR spectroscopy through the formation of a soluble and stable NHC–carbodiimide adduct. To deprotonate the azolium salt and liberate the NHC, a mechanism is proposed in which the role of base is played by ITX radical anion formed in situ by a primary photoinduced electron-transfer reaction between electronically excited ITX (oxidant) and BPh4− (reductant). An NHC yield as high as 70 % is achieved upon starting with a stoichiometric ratio of ITX and azolium salt. Three different photoNHC-mediated polymerizations are described: synthesis of polyurethane and polyester by organocatalyzed step-growth polymerization and ring-opening copolymerization, respectively, and generation of polynorbornene by ring-opening metathesis polymerization using an NHC-coordinated Ru catalyst formed in situ. 相似文献
20.
A series of ruthenium carbene catalysts containing 2‐sulfidophenolate bidentate ligand with an ortho‐substituent next to the oxygen atom were synthesized. The molecular structure of ruthenium carbene complex containing 2‐isopropyl‐6‐sulfidophenolate ligand was confirmed through single crystal X‐ray diffraction. An oxygen atom can be found in the opposite position of the N‐heterocyclic carbene (NHC) based on the steric hindrance and strong trans‐effects of the NHC ligand. The ruthenium carbene catalyst can catalyze ring‐opening metathesis polymerization (ROMP) reaction of norbornene with high activity and Z‐selectivity and cross metathesis (CM) reactions of terminal alkenes with (Z)‐but‐2‐ene‐1,4‐diol to give Z‐olefin products (Z/E ratios, 70:30–89:11) in low yields (13%–38%). When AlCl3 was added into the CM reactions, yields (51%–88%) were considerably improved and process becomes highly selective for E‐olefin products (E/Z ratios, 79:21–96:4). Similar to other ruthenium carbene catalysts, these new complexes can tolerate different functional groups. 相似文献