首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
[reaction: see text] 2-Oxazolidinones 2 are obtained in excellent yields (up to 100%) and with unprecedented catalytic efficiencies (up to 2000 mol of product/mol of catalyst used) by direct PdI2/KI-catalyzed oxidative carbonylation of the readily available 2-amino-1-alkanols 1. Reactions are carried out in MeOH as the solvent at 100 degrees C using a 1/6/5 CO/O2/air mixture (60 atm total pressure at 25 degrees C).  相似文献   

2.
The effect of calcination temperature on the physico-chemical characterization of manganese nodule leached residue (MNLR) and water-washed manganese nodule leached residue (WMNLR) has been investigated on the basis of chemical analysis, XRD, TG-DTA, FTIR, surface hydroxyl groups, surface oxygen, reducing and oxidizing sites, surface area. XRD and IR confirm the presence of amorphous iron oxyhydroxides, delta-MnO2, which are converted to alpha-Fe2O3 and gamma-Mn2O3 phases above 400 degrees C of calcination, respectively. A solid solution of Fe2O3 and Mn2O3 is formed above 700 degrees C. The surface area, surface hydroxyl group, surface oxygen, reducing and oxidizing sites increase with the increase in calcination temperature up to 400 degrees C and then decrease with further rise in calcination temperature up to 700 degrees C. The catalytic activity of the sample towards H2O2 decomposition shows the similar trend as surface properties. A suitable Mn(3+)Mn4+ couple favours H2O2 decomposition reaction. The activity has been correlated with various physico-chemical properties.  相似文献   

3.
A novel polydentate C18 silica column was evaluated at an elevated temperature under acidic, basic, and neutral mobile phase conditions using ACN and methanol as the mobile phase organic modifier. The temperature range was 40-200 degrees C. The mobile phase compositions were from 0 to 80% organic-aqueous v/v and the mobile phase pH levels were between 2 and 12. The maximum operating temperature of the column was affected by the amount and type of organic modifier used in the mobile phase. Under neutral conditions, the column showed good column thermal stability at temperatures ranging between 120 and 200 degrees C in methanol-water and ACN-water solvent systems. At pH 2 and 3, the column performed well up to about 160 degrees C at two fixed ACN-buffer compositions. Under basic conditions at elevated temperatures, the column material deteriorated more quickly, but still remained stable up to 100 degrees C at pH 9 and 60 degrees C at pH 10. The results of this study indicate that this novel C18 silica-based column represents a significant advancement in RPLC column technology with enhanced thermal and pH stability when compared to traditional bonded phase silica columns.  相似文献   

4.
In a systematic study, allyl phenyl ether (1) was heated in water for 1 h at temperatures of 180 degrees C and above. Parallel experiments were conducted with a conventionally heated autoclave and a recently developed microwave batch reactor. Relatively modest temperature differences resulted in diverse product distributions, and these were independent of the method of heating. Maximum conversion of 1 to 2-allylphenol occurred at 200 degrees C (56%) and to 2-methyl-2,3-dihydrobenzofuran at 250 degrees C (72%). Although 2-(2-hydroxyprop-1-yl)phenol comprised less than 1% of the product mixture at both 180 and 260 degrees C, it accounted for 37% at 230 degrees C. The reaction sequence was investigated by heating intermediates individually at selected temperatures up to 290 degrees C. Hydration of 2-allylphenol to 2-(2-hydroxyprop-1-yl)phenol was partially reversible. The work showed that high-temperature water constitutes an environmentally benign alternative to the use of acid catalysts or organic solvents and offers scope for interconversion of alcohols and alkenes.  相似文献   

5.
The use of a thermophilic cytochrome P450, CYP119, in electrocatalytic dehalogenations of C1 halocarbon solvents is studied. Temperature stable enzyme-modified electrodes were constructed using sol-gel and polymeric surfactant approaches. CYP119 deposited in a dimethyldidodecylammonium poly(p-styrene sulfonate) (DDAPSS) film has good retention of electrochemical activity up to 80 degrees C. At potentials approaching the FeII/I couple, the CYP119/DDAPSS films demonstrate high catalytic dehalogenations of the C1 chloromethanes CCl4, CHCl3, and CH2Cl2. Product analysis identified mixtures of sequentially dechlorinated products up to methane; no evidence for radical-coupled products was observed. The yield of methane from the CYP119-catalyzed reduction of CCl4 is increased 35-fold from 25 degrees C to 55 degrees C. In combination with the lack of C2 products, the facility of an overall eight-electron reductive dehalogenation suggests that the substrate is constrained within the protein during electrocatalytic turnover.  相似文献   

6.
A comparative biochemical characterization is described of two competing enzymes in the production of flavoring 5'-ribonucleotides, barley malt sprouts 5'-phosphodiesterase (5'-PDE) and phosphomonoesterase (PME). Fractionation of these two enzymes and partial purification of 5'-PDE were achieved by a combination of thermal treatments and precipitation with acetone. With synthetic substrates, under standard assay conditions, 5'-PDE and PME had maximum activities at pH 8.9, 70 degrees C and 55 degrees C, and Km of 0.26 mM and 0.19 mM, respectively. In the presence of 10 mM Mg2+ ions, barley malt sprouts 5'-PDE was activated by up to 160% of the original activity, while PME was inhibited. Zn2+ activated PME by up to 125% of the original activity. Both enzymes were moderately inhibited after addition of Cu2+, Co2+, Ca2+, and Mn2+ ions (10 mM), but, significantly, by addition of the chelating agent EDTA. In the absence of substrate and up to 80 degrees C, barley malt sprouts 5'-PDE showed excellent stability and retained 70% of its original activity at 70 degrees C after 120 min.  相似文献   

7.
The stability of monocalcium aluminate decahydrate, with the nominal composition CaAl(2)O(4).10H(2)O (CAH(10)), has a decisive role for the strength development and durability of cementitious materials based on high alumina cements. This has prompted an investigation of the thermal transformation of crystalline monocalcium aluminate decahydrate in air to an amorphous phase by in-situ synchrotron X-ray powder diffraction in the temperature range from 25 to 500 degrees C, by DTA/TGA, and (2)H, (27)Al MAS NMR spectroscopy. The decomposition includes the loss of hydrogen-bonded water molecules in the temperature range up to 175 degrees C, coupled with a reduction of the unit cell volume from 1928 A(3) at 25 degrees C, to 1674 A(3) at 185 degrees C. Furthermore, X-ray diffraction shows that CaAl(2)O(4).10H(2)O starts to transform to an amorphous phase at approximately 65 degrees C. This phase is fully developed at approximately 175 degrees C and it converts to crystalline CaAl(2)O(4) when heated to 1300 degrees C. The thermal decomposition in the temperature range from approximately 65 to approximately 175 degrees C involves both formation of an amorphous phase including AlO(4) tetrahedra and structural changes in the remaining crystalline phase.  相似文献   

8.
Koike T  Murata K  Ikariya T 《Organic letters》2000,2(24):3833-3836
[reaction: see text] A well-defined chiral Ru catalyst RuCl(N-(p-toluenesulfonyl)-1, 2-diphenylethylenediamine)(eta(6)-arene) effectively promotes asymmetric transfer hydrogenation of 1-aryl-1,2-propanedione with HCOOH/N(C(2)H(5))(3), leading preferentially to optically active 1-aryl-2-hydroxy-1-propanone with up to 99% ee and 89% yield at 10 degrees C. The reaction at 40 degrees C gives anti-1-aryl-1, 2-propanediol with up to 95% ee and 78% yield. This is a highly efficient procedure for the synthesis of optically active anti-diols.  相似文献   

9.
Chromium, cadmium and lead were determined in different fractions of the winemaking process such as in grape, pressed pomace, must deposit, deposit of lees, must and wine. Grape, pressed pomace, must deposit and deposit of lees were digested by a high-pressure microwave-assisted digestion system with a mixture of nitric acid and hydrogen peroxide, while for must and wine no special treatment was required. The temperature programs of the graphite furnace were optimised and different matrix modifiers were applied: Mg(NO3)2, NaVO3 for Cr and NH4H2PO4, Pd(NO3)2 for Pb and Cd determinations. Mg(NO3)2 and NaVO3 thermally stabilized Cr and enabled the increase of pyrolysis temperatures up to 1500 degrees C. NH4H2PO4 and Pd(NO3)2 are suitable modifiers for Pb and allowed pyrolysis temperatures up to 800 degrees C in grape, pressed pomace and wine samples, 1100 degrees C in must samples and 1200 degrees C in deposit of lees. The non-specific background absorption of NH4H2PO4 was 1.5-2 orders of magnitude higher than that of the Pd(NO3)2.  相似文献   

10.
Thermal stability of well-crystallized cubic boron nitride (cBN) films grown by chemical vapor deposition has been investigated by cathodoluminescence (CL), Raman spectroscopy, and scanning electron microscopy (SEM) with the cBN films annealed at various temperatures up to 1,300 degrees C. The crystallinity of the cBN films further improves, as indicated by a reduction of the relevant Raman line width, when the annealing temperature exceeds 1,100 degrees C. Structural damage or amorphization was observed on the grain boundaries of the cBN crystals when annealing temperature reaches 1,300 degrees C. The CL spectra are found to be unchanged up to 1,100 degrees C after annealing at 500 degrees C, showing the stability of the cBN films in electronic properties up to this temperature. New features were observed in the CL spectra when annealing temperature reaches 1,200-1,300 degrees C.  相似文献   

11.
Reactions of trimethyl(trifluoromethyl)silane in the presence of "naked" fluoride proceed up to a temperature of +5 degrees C mainly with formation of [Me3Si(CF3)2]-. A further rise of temperature up to about 20 degrees C gives evidence for the formation of a salt with the 1,1,1,2,3,6,6,6-octafluoro-2,4,4,5,5-pentakis(trifluoromethyl)hexan-3-ide anion. This intermediate decomposes at room temperature into the 1,1,1,3,5,5,5-heptafluoro-2,4-bis(trifluoromethyl)pentenide anion. The bis([15]crown-5)cesium salt, [Cs([15]crown-5)2][(CF3)2CCFC(CF3)2] has been characterized unambiguously as the stable final product of this reaction sequence. Thermal decomposition of this salt opens a convenient nontoxic route to obtain 1,1,3,3-tetrakis(trifluoromethyl)allene, (F3C)2C=C=C(CF3)2.  相似文献   

12.
A high-resolution nuclear-magnetic-resonance probe (500 MHz for 1H) has been developed for multinuclear pulsed-field-gradient spin-echo diffusion measurements at high temperatures up to 400 degrees C. The convection effect on the self-diffusion measurement is minimized by achieving the homogeneous temperature distributions of +/-1 and +/-2 degrees C, respectively, at 250 and 400 degrees C. The high temperature homogeneity is attained by using the solid-state heating system composed of a ceramic (AlN) with high thermal conductivity comparable with that of metal aluminium. The self-diffusion coefficients D for light (1H2O) and heavy (2H2O) water are distinguishably measured at subcritical temperatures of 30-350 degrees C with intervals of 10-25 degrees C on the liquid-vapor coexisting curve and at a supercritical temperature of 400 degrees C as a function of water density between 0.071 and 0.251 gcm3. The D value obtained for 1H2O is 10%-20% smaller than those previously reported because of the absence of the convection effect. At 400 degrees C, the D value for 1H2O is increased by a factor of 3.7 as the water density is reduced from 0.251 to 0.071 gcm3. The isotope ratio D(1H2O)D(2H2O) decreases from 1.23 to approximately 1.0 as the temperature increases from 30 to 400 degrees C. The linear hydrodynamic relationship between the self-diffusion coefficient divided by the temperature and the inverse viscosity does not hold. The effective hydrodynamic radius of water is not constant but increases with the temperature elevation in subcritical water.  相似文献   

13.
Addition of 15-crown-5 to [GdF(AsF6)2], both dissolved in liquid SO2, and crystallisation at -30 degrees C has led to the isolation of the tetranuclear ionic complex [Gd4F7(15-crown-5)4][AsF6]5.6 SO2 which is stable up to--10 degrees C where SO2 loss leads to loss of crystallinity.  相似文献   

14.
Batches of poly(methyloctylsiloxane) (PMOS)-loaded silica were prepared by deposition from a solution of PMOS into the pores of HPLC silica. Portions of PMOS-loaded silica were subjected to a thermal treatment at 100 degrees C for 24h (condition 1) in a tube furnace under a nitrogen atmosphere. After that, the material was heated for 4h at higher temperatures (150-400 degrees C) (condition 2). Heating at higher temperatures produces polymer bilayers. Non-immobilized and thermally treated stationary phases were characterized by percent carbon, (29)Si cross-polarization magic angle spinning nuclear magnetic resonance spectroscopy and reversed-phase chromatographic performance. The results show that thermal treatment between 150 and 300 degrees C accelerates the immobilization process, possibly due to some bond breaking of the polysiloxane, with formation of strong linkages to the surface of the support, resulting in more complete coverage of the silica. The chromatographic results show an improvement of efficiency with the increase of the temperature of condition 2 up to 300 degrees C and an increase in the resolution of the components, mainly for the phase heated at 300 degrees C. Such results demonstrate that a two-step thermal treatment (100 degrees C then 150-300 degrees C) produces stationary phases with good properties for use in reversed-phase high-performance liquid chromatography.  相似文献   

15.
Fourier transform infrared spectroscopy has been applied to study the thermal stability of multilayer Langmuir-Schaefer (LS) films of lysozyme deposited on silicon substrates. The study has confirmed previous structural findings that the LS protein films have a high thermal stability that is extended in a lysozyme multilayer up to 200 degrees C. 2D infrared analysis has been used here to identify the correlated molecular species during thermal denaturation. Asynchronous 2D spectra have shown that the two components of water, fully and not fully hydrogen bonded, in the high-wavenumber range (2800-3600 cm-1) are negatively correlated with the amine stretching band at 3300 cm-1. On the grounds of the 2D spectra the FTIR spectra have been deconvoluted using three main components, two for water and one for the amine. This analysis has shown that, at the first drying stage, up to 100 degrees C, only the water that is not fully hydrogen bonded is removed. Moreover, the amine intensity band does not change up to 200 degrees C, the temperature at which the structural stability of the multilayer lysozyme films ceases.  相似文献   

16.
Goessler W  Pavkov M 《The Analyst》2003,128(6):796-802
Arsenous acid, dimethylarsinic acid (DMA), methylarsonic acid (MA), arsenic acid, arsenobetaine bromide (AB), trimethylarsine oxide (TMAO), arsenocholine iodide (AC), and tetramethylarsonium iodide (TETRA) were heated in a microwave autoclave with nitric acid to 100-300 degrees C. The arsenic compounds in the digests were separated with anion- and cation-exchange chromatography and determined with an inductively coupled plasma mass spectrometer as arsenic-specific detector. Arsenous acid was completely oxidized to arsenic acid at 100 degrees C. For a complete oxidation of MA and DMA to arsenic acid temperatures > 220 degrees C and > 280 degrees C were necessary. AB decomposed to arsenic acid via TMAO. Complete conversion was only obtained after heating the sample for 90 min to 300 degrees C. For a complete conversion of TMAO similar harsh conditions were necessary. AC was already substantially degraded to TMAO, TETRA and two unknown compounds at 100 degrees C. The unknown arsenic compounds were found only in the digests up to 160 degrees C. Quantitative conversion of AC to arsenic acid went also via TMAO. At temperatures above 220 degrees C TETRA started to convert to TMAO, which then was further converted to arsenic acid. To investigate whether the results obtained for the arsenic standards are transferable to real samples, the certified reference material DORM-2 was also heated in nitric acid with variable digestion temperatures and times. For an almost complete conversion of the AB present in DORM-2 90 min at 300 degrees C were necessary. Total organic carbon (TOC) was less < 0.2% when DORM-2 was heated at temperatures > or = 260 degrees C for 60 min. UV photo-oxidation of DORM-2 was investigated as an alternative sample decomposition. Only 6% of AB was converted to arsenic acid when DORM-2 was irradiated for 2 h at 1000 W. In contrast to microwave heating substantial amounts of MA were observed as degradation product.  相似文献   

17.
Two-photon photochemical generation of reactive enediyne   总被引:1,自引:0,他引:1  
p-Quinoid cyclopropenone-containing enediyne precursor (1) has been synthesized by monocyclopropanation of one of the triple bonds in p-dimethoxy-substituted 3,4-benzocyclodeca-1,5-diyne followed by oxidative demethylation. Cyclopropenone 1 is stable up to 90 degrees C but readily produces reactive enediyne 2 upon single-photon (Phi(300)(nm) = 0.46) or two-photon (sigma(800 nm) = 0.5 GM) photolysis. The photoproduct 2 undergoes Bergman cyclization at 40 degrees C with the lifetime of 88 h.  相似文献   

18.
We have found a thermal hysteresis in the photoresponsivity of a Langmuir film for the first time. The Langmuir film of an amphiphilic spiropyran, 1',3'-dihydro-3',3'-dimethyl-6-nitro-1'-octadecyl-8-(docosanoyloxymethyl)spiro[2H-1-benzopyran-2,2'-(2H)-indole] (SP) was fabricated at 13 degrees C at 10 mN m-1, followed by heating to a given temperature. UV irradiation of this film caused only the isomerization of SP to the corresponding merocyanine (MC) up to 29 degrees C. Light-induced J-aggregation of MC occurred at 30 degrees C. On the other hand, once the film was heated to 30 degrees C, light-induced J-aggregation was observed down to 27 degrees C. The hysteresis should be related with the phase transitions that occur in the bulk of SP at similar temperatures. No significant morphological change occurred by light-induced J-aggregation in the Langmuir-Blodgett (LB) film of SP by the present method, in contrast to the case of the LB films fabricated under isothermal conditions at 30 degrees C. This feature enabled us to pattern the LB film with J-aggregate of MC by UV irradiation through a photomask of lines with a width of 5 mum each.  相似文献   

19.
The thermal decomposition of fluorinated single-walled carbon nanotubes (F-SWNTs), known to result in pristine SWNTs, has been investigated by freezing the gaseous products formed at temperatures between 50 and 500 degrees C under high vacuum in an argon matrix at 10-20 K and analyzing the trapped species by IR spectroscopy. The major products of F-SWNT decomposition are carbonyl fluoride (COF2) below 300 degrees C and CF4 above 300 degrees C. For comparison, graphite fluoride is stable thermally up to 300 degrees C under these conditions, and the major gas-phase species at temperatures below 500 degrees C are CF4 and the CF3 radical. F-SWNTs are thermally less stable than graphite fluoride, and etching of the nanotubes is observed at lower thermolysis temperatures.  相似文献   

20.
The thermal stability of different organic layers on silicon has been investigated by in situ infrared spectroscopy, using a specially designed variable-temperature cell. The monolayers were covalently grafted onto atomically flat (111) hydrogenated silicon surfaces through the (photochemical or catalytic) hydrosilylation of 1-decene, heptadecafluoro-1-decene or undecylenic acid. In contrast to alkyl monolayers, which desorb as alkene chains around 300 degrees C by the breaking of the Si-C bond through a beta-hydride elimination mechanism, the alkyl layers functionalized with a carboxylic acid terminal group undergo successive chemical transformations. At 200-250 degrees C, the carboxyl end groups couple forming anhydrides, which subsequently decompose at 250-300 degrees C by loss of the functional group. In the case of fluorinated alkyl chains, the C-C bond located between CH2 and CF2 units is first broken at 250-300 degrees C. In either case, the remaining alkyl layer is stable up to 350 degrees C, which is accounted for by a kinetic model involving chain pairing on the surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号