首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Isabel López 《Talanta》2010,82(2):594-599
A fast method for mercury extraction from biological samples based on the use of HCl leaching plus different enzymatic hydrolysis (with and without mercury complexing agents), and the use of focussed ultrasounds (2-mm microtip) is here proposed. Total mercury content in several biological samples was determined by FI-ICP-MS using a carrier solution consisting of 0.1% (v/v) HCl, 0.1% (v/v) 2-mercaptoethanol, to avoid memory effect, and 0.15% (w/v) KCl. For mercury speciation a RP18 chromatographic column coupled to ICP-MS was used. A mobile phase consisting of 0.1% (v/v) formic acid, 0.1% (v/v) HFBA, 2% (v/v) methanol, and 0.02% (w/v) mM l-cysteine at pH 2.1 was used for chromatographic separation of the mercury species in the sample extracts. Extraction procedures were validated by using 50 mg of tuna fish tissue CRM-463 (2.85 ± 0.16 mg kg−1 for methylmercury). The recoveries obtained were 99 ± 3% and 93 ± 1% after acid leaching (HCl 7 M) and enzymatic extraction (15 mg protease type XIV in 2.5% (v/v) 2-mercaptoethanol), respectively. The optimal sonication conditions (5 min of exposure time and 40% of ultrasound amplitude) were applied to 5 mg of CRM-463 (88 ± 5%), 5 mg of mussel tissue (81 ± 11%) and to 2 mg of zebra fish embryos (90 ± 10%) obtaining good recoveries in all cases. Methylmecury was found to be the most abundant Hg specie in all samples. The developed method is simple and rapid (5 min sample treatment); it is suitable for very small samples and does not alter the original form of the mercury species. Thus, it is of special interest in those cases in which validation of the results may often be hampered by lack of sample availability.  相似文献   

2.
Bagheri H  Gholami A 《Talanta》2001,55(6):681-1150
A new, simple and sensitive method for the simultaneous determination of mercury(II) and methylmercury chloride at sub-ng l−1 levels in river waters is described. Inorganic and organic mercury were preconcentrated from fresh water samples simultaneously on a laboratory-made column containing 2-mercaptobenzimidazol loaded on silica gel and then quantitatively eluted with 0.05 M KCN solution and 2.0 M HCl to desorp inorganic and methylmercury species, respectively. After irradiation with an intensive UV source, MeHg+ was decomposed and mercury vapours were generated from inorganic and organic mercury using an acidic SnCl2 solution in a continuous flow system and were subsequently determined with a cold vapour atomic fluorescence (CV-AFS) spectrometer. Detection limits (3σ) were 0.07 and 0.05 ng l−1 (as Hg) for mercury(II) chloride and methylmercury chloride, respectively. Relative standard deviations of method (%R.S.D.) were 8.8 and 10 for inorganic and organomercuric species in the river water, respectively. The analysis of real samples, taken from different rivers, showed that inorganic mercury levels ranged from 4.0±0.6 to 12±1 ng l−1 (as Hg and 95% confidence limit) and methylmercury levels at 0.2±0.02 ng l−1(as Hg).  相似文献   

3.
建立了微波萃取高效液相色谱-冷原子荧光光谱法(MAE-HPLC-CVAFS)测定沉积物中甲基汞(MeHg+)和无机汞(Hg2+)的方法。以0.1%(V/V)2-巯基乙醇为萃取剂,用于沉积物样品中汞形态的萃取,在80℃下萃取8 min,萃取液直接注入HPLC-CVAFS系统分析。在优化条件下,MeHg+和Hg2+的检出限分别为0.58和0.48 ng/g;加标回收率分别为96.2%和95.8%;RSD(n=6)分别为5.7%和4.1%。对标准参考物质(IAEA-405和ERM-CC580)的分析结果与推荐值一致。本方法简单、快速、准确、检出限低,抗干扰能力强,具有很好的实用性和推广价值。  相似文献   

4.
An analytical procedure for the determination of methylmercury in human hair after acid digestion using aqueous ethylation, headspace solid-phase microextraction sampling and final gas chromatography-cold-vapour atomic fluorescence spectrometry detection is described. Acid digestion, extraction procedure and chromatographic conditions were optimised. An optimal linear range using standard mercury solutions was found and concentration detection limits for the mercury species, MeHg and Hg2+, were about 50 and 80 ng/g, respectively, for 100 mg of human hair. The reproducibility of the developed analytical procedure assessed for hair samples with incurred MeHg was better than 18% (n=5). A certified reference material from the National Institute of Environmental Studies (Japan) was used for validation. Analysis of human hair collected from urban inhabitants was performed and the mean value of methylmercury content in hair samples was 0.764 +/- 0.732 microg/g for the population tested. The developed analytical method is simple, fast and a suitable procedure for the monitoring and screening of human exposure to methylmercury.  相似文献   

5.
A high-pressure microwave digestion was applied for microwave-assisted extraction (MAE) of mercury species from sediments and zoobenthos samples. A mixture containing 3 mol L−1 HCl, 50% aqueous methanol and 0.2 mol L−1 citric acid (for masking co-extracted Fe3+) was selected as the most suitable extraction agent. The efficiency of proposed extraction method was better than 95% with R.S.D. below 6%. A preconcentration method utilizing a “homemade” C18 solid phase extraction (SPE) microcolumns was developed to enhance sensitivity of the mercury species determination using on-column complex formation of mercury-2-mercaptophenol complexes. Methanol was chosen for counter-current elution of the retained mercury complexes achieving a preconcentration factor as much as 1000. The preconcentration method was applied for the speciation analysis of mercury in river water samples. The high-performance liquid chromatography-cold vapour atomic fluorescence spectrometric (HPLC/CV-AFS) method was used for the speciation analysis of mercury. The complete separation of four mercury species was achieved by an isocratic elution of aqueous methanol (65%/35%) on a Zorbax SB-C18 column (4.6 mm × 150 mm, 5 μm) using the same complexation reagent (2-mercaptophenol). The limits of detection were 4.3 μg L−1 for methylmercury (MeHg+), 1.4 μg L−1 for ethylmercury (EtHg+), 0.8 μg L−1 for inorganic mercury (Hg2+), 0.8 μg L−1 for phenylmercury (PhHg+).  相似文献   

6.
Eight different analytical extraction procedures commonly used to extract mercury species from biological samples were evaluated by analyzing Tuna Fish Tissue Certified Reference Material (ERM-CE464) certified for the content of total mercury and methylmercury. Speciated isotope dilution mass spectrometry (SIDMS; US Environmental Protection Agency’s method 6800) was utilized to evaluate and effectively compensate for potential errors during measurement and accurately quantify mercury species using all the extraction methods. SIDMS was used to accurately evaluate species transformations during sample pretreatment, preparation and analysis protocols. The extraction methods tested in this paper were based on alkaline extraction with KOH or tetramethylammonium hydroxide; acid leaching with HCl, HNO3 or CH3COOH; extraction with l-cysteine hydrochloride; and enzymatic digestion with protease XIV. Detection of total mercury and mercury species from all extraction methods was carried out by inductively coupled plasma mass spectrometry (ICP-MS) and high-performance liquid chromatography–ICP-MS, respectively. Microwave-assisted extraction and ultrasound-assisted extraction were found to be the most efficient alkaline digestion protocols that caused the lowest levels of transformation of mercury species (6% or less). Extraction with 5 M HCl or enzymatic digestion with protease resulted in the second-highest extraction efficiency, with relatively lower transformation of methylmercury to inorganic mercury (3 and 1.4%, respectively). Despite frequent use of acid leaching for the extraction of mercury species from tuna fish samples, the lowest extraction efficiencies and the highest mercury species transformation were obtained when microwave-assisted extraction with 4 M HNO3 or CH3COOH was used. Transformations as high as 30% were found using some literature protocols; however, all the extractions tested produced accurate quantitation when corrected in accordance with the SIDMS method standardized in the US Environmental Protection Agency’s method 6800. Figure Determinative CRM Tuna Fish Tissue Methylmercury Calibration vs. Determinative Calculation.  相似文献   

7.
The combination of microwave-assisted solvent extraction (MASE) and reversed-phase liquid chromatography (RPLC) with UV detection has been investigated for the efficient determination of phenylurea herbicides in soils involving the single-residue method (SRM) approach (linuron) and the multi-residue method (MRM) approach (monuron, monolinuron, isoproturon, metobromuron, diuron and linuron). Critical parameters of MASE, viz, extraction temperature, water content and extraction solvent were varied in order to optimise recoveries of the analytes while simultaneously minimising co-extraction of soil interferences. The optimised extraction procedure was applied to different types of soil with an organic carbon content of 0.4-16.7%. Besides freshly spiked soil samples, method validation included the analysis of samples with aged residues. A comparative study between the applicability of RPLC-UV without and with the use of column switching for the processing of uncleaned extracts, was carried out. For some of the tested analyte/matrix combinations the one-column approach (LC mode) is feasible. In comparison to LC, coupled-column LC (LC-LC mode) provides high selectivity in single-residue analysis (linuron) and, although less pronounced in multi-residue analysis (all six phenylurea herbicides), the clean-up performance of LC-LC improves both time of analysis and sample throughput. In the MRM approach the developed procedure involving MASE and LC-LC-UV provided acceptable recoveries (range, 80-120%) and RSDs (<12%) at levels of 10 microg/kg (n=9) and 50 microg/kg (n=7), respectively, for most analyte/matrix combinations. Recoveries from aged residue samples spiked at a level of 100 microg/kg (n=7) ranged, depending of the analyte/soil type combination, from 41-113% with RSDs ranging from 1-35%. In the SRM approach the developed LC-LC procedure was applied for the determination of linuron in 28 sandy soil samples collected in a field study. Linuron could be determined in soil with a limit of quantitation of 10 microg/kg.  相似文献   

8.
A simple and rapid microwave-assisted alkaline digestion procedure was developed in combination with high performance liquid chromatography-ultraviolet post-column oxidation-cold vapour atomic fluorescence spectrometric detection for methylmercury determination in biological tissues. Since the stability of methylmercury in methanolic potassium hydroxide solution under microwave irradiation was verified, the microwave-assisted extraction procedure was optimized in terms of quantitative recovery of methylmercury and minimum time required. The alkaline extracts were subjected to clean-up steps with dichloromethane and hydrochloric acid in order to reduce matrix interferences in methylmercury determination. The effects of matrix interferences were checked by comparison of the slopes corresponding to calibration and standard addition curves. The accuracy of the method was evaluated by the analysis of two biological certified reference materials, NRC TORT-2 and BCR 463. The results obtained by the proposed method were in good agreement with the certified values of methylmercury concentration in both materials. The detection limit was 10 microg kg(-1) and the relative standard deviation was < 8% for methylmercury concentrations ranging from 0.15 to 3.0 mg kg(-1).  相似文献   

9.
A liquid chromatography-inductively coupled plasma mass spectrometric (LC-ICP-MS) method for lead and mercury speciation analysis was described. Sample containing ionic lead and mercury compounds was subjected to liquid chromatographic separation before injection into the direct injection high efficiency nebulizer (DIHEN, 170-AA). The species studied include inorganic lead (Pb(II)), trimethyl lead (trimethyl-Pb), triethyl lead (triethyl-Pb), inorganic mercury (Hg(II)), methyl mercury (methyl-Hg) and ethyl mercury (ethyl-Hg), which were well separated by reversed-phase liquid chromatography with a C18 column as the stationary phase and a pH 2.8 solution of 0.2% (v/v) 2-mercaptoethanol, 1 mg L(-1) ETDA, 174.2 mg L(-1) sodium 1-pentanesulfonate and 12% (v/v) methanol as the mobile phase. The lead and mercury species in biological tissues were quantitatively extracted, into 10 g L(-1) EDTA and 0.2% (v/v) 2-mercaptoethanol solution taken in a closed centrifuge tube and kept on water bath, using microwaves at 65 degrees C for 2 min. The spike recovery of individual lead and mercury species determined by spiking the samples with suitable concentration of lead and mercury mixture standard were between 93% and 99%. The detection limits of the species studied were in the range 0.1-0.3 microg Pb L(-1) and 0.2-0.3 microg Hg L(-1). The procedure has been applied for the speciation analysis of two reference samples namely NRCC DOLT-3 Dogfish Liver and DORM-2 Dogfish Muscle and a swordfish sample obtained locally. The sum of the concentrations of individual species has been compared with the certified values for total lead and mercury to verify the accuracy of the method. The precision between sample replicates was better than 10% with LC-DIHEN-ICP-MS method.  相似文献   

10.
For the determination of total mercury in hair, an amount (25.0 mg) of hair sample was digested with conc. HNO3 (400 microl) at 90 degrees C for 10 min in a 7-ml teflon microreaction vessel. After digestion, the pH of the acidic hair mixture was adjusted to 5.0-6.0 by NaOH and was then passed through a clean-up Sep-Pak C18 cartridge. To the eluate, 2,3-dimercaptopropane-1-sulfonate (DMPS) and sodium acetate buffer (pH = 6.0) were added to form a mercury-DMPS complex. This complex was preconcentrated on two Sep-Pak C18 cartridges in series, and each cartridge was eluted with methanol and adjusted to 2.00 ml. A portion (50 microl) was introduced into a graphite cuvette and then atomized according to a temperature program. The method detection limit (MDL, 3sigma) was 0.064 (microg g(-1)); the calibration graph was linear up to 7.52 microg g(-1). Good accuracies were obtained when testing two human hair certified reference materials (GBW 09101 and BCR-397). Six real samples were analyzed, and the recoveries were 95.8 - 98.2% with a relative standard deviation (RSD, n = 3) < 2.1%. For the determination of methylmercury (CH3Hg+), 25.0 mg of hair sample was extracted with 2.0 mol dm(-3) HCl (1.0 ml) by ultrasonicating for 1 h. The supernatant solution was used for CH3Hg+ analysis and the hair residue was used for the analysis of inorganic mercury (Hg2+). The MDL of CH3Hg+ was 0.068 microg g(-1); the calibration graph was linear up to 6.00 microg g(-1). Six real samples were analyzed, and the recoveries were 96.0-99.2% with RSD (n = 3) < 2.3%. The sum of the concentrations of CH3Hg+ and Hg2+ was very close to that of the total mercury measured with a relative error within 3.6%. The proposed method can be accurately applied to the measurement of CH3Hg+, Hg2+, and total mercury in hair samples.  相似文献   

11.
A diffusive gradient in thin films technique (DGT) was combined with liquid chromatography (LC) and cold vapor atomic fluorescence spectrometry (CV-AFS) for the simultaneous quantification of four mercury species (Hg2+, CH3Hg+, C2H5Hg+, and C6H5Hg+). After diffusion through an agarose diffusive layer, the mercury species were accumulated in resin gels containing thiol-functionalized ion-exchange resins (Duolite GT73, and Ambersep GT74). A microwave-assisted extraction (MAE) in the presence of 6 M HCl and 5 M HCl (55 °C, 15 min) was used for isolation of mercury species from Ambersep and Duolite resin gels, respectively. The extraction efficiency was higher than 95.0% (RSD 3.5%). The mercury species were separated with a mobile phase containing 6.2% methanol + 0.05% 2-mercaptoethanol + 0.02 M ammonium acetate with a stepwise increase of methanol content up to 80% in the 16th min on a Zorbax C18 reverse phase column. The LODs of DGT–MAE–LC–CV-AFS method were 38 ng L−1 for CH3Hg+, 13 ng L−1 for Hg2+, 34 ng L−1 for C2H5Hg+ and 30 ng L−1 for C6H5Hg+ for 24 h DGT accumulation at 25 °C.  相似文献   

12.
The analytical procedure for analysis of methylmercury in fish was developed. It involves microwave-assisted digestion with alkaline solution (tetramethylammonium hydroxide), addition of Cu2+, aqueous-phase derivatization of methylmercury with sodium tetrapropylborate, and subsequent extraction with n-heptane. The methylmercury derivative was desorbed in the splitless injection port of a gas chromatograph and subsequently analyzed by electron impact mass spectrometry. Optimum conditions allowed sample throughout to be controlled by the instrumental analysis time (near 7 min per sample) but not by the sample preparation step. At the power of 15-30, 45, and 60-75 W, sample preparation time is only 3.5, 2.5, and 1.5 min, respectively. The proposed method was finally validated by the analysis of three biological certified reference materials, BCR CRM 464 tuna fish, NRC DORM-2 dogfish muscle, and NRC DOLT-2 dogfish liver. The detection limit of the overall procedure was found to be 40 ng/g of biological tissue for methylmercury. The recovery of methylmercury was 91.2-95.3% for tuna, 89.3-94.7% for marlin, and 91.7-94.8% for shark, respectively. The detected and certified values of methylmercury of three biological certified reference materials were as follows: 5.34 +/- 0.30 microg/g (mean +/- S.D.) and 5.50 +/- 0.17 microg/g for CRM 464 tuna fish, 4.34 +/- 0.24 and 4.47 +/- 0.32 microg/g for NRC DORM-2 dogfish muscle, and 0.652 +/- 0.053 and 0.693 +/- 0.055 microg/g for NRC DOLT-2 dogfish liver, respectively. It indicated that the method was well available to quantify the methylmercury in fish.  相似文献   

13.
A simple and sensitive method with a fast sample preparation procedure is proposed for the determination of mercury species in plasma/serum. The method combines online high-performance liquid chromatography separation, Hg cold-vapor formation and inductively coupled plasma mass spectrometry detection. Prior to analysis, plasma (250 μL) was accurately pipetted into 15 mL conical tubes. Then, an extractant solution containing mercaptoethanol, L-cysteine and HCl was added to the samples following sonication for 10 min. Quantitative mercury extraction was achieved with the proposed procedure. Separation of mercury species was accomplished in less than 8 min on a C8 reverse phase column with a mobile phase containing 3% v/v methanol + 97% v/v (0.5% v/v 2-mercaptoethanol + 0.05% v/v formic acid). The method detection limits were found to be 12 ng L−1, 5 ng L−1 and 4 ng L−1 for inorganic mercury, ethylmercury and methylmercury, respectively. Method accuracy is traceable to Standard Reference Material (SRM) 966 Toxic Metals in Bovine Blood from NIST. Additional validation was provided by the analysis of a secondary reference serum sample from the INSQ-Canada. Finally, the method was successfully applied for the speciation of mercury in plasma samples collected from volunteers exposed to methylmercury through fish consumption. For the first time to our knowledge, levels of different species of Hg in plasma samples from riverside populations exposed to MeHg were determined.  相似文献   

14.
液相微萃取-离子色谱法测定污水中痕量芳香胺   总被引:1,自引:0,他引:1  
Zhu Y  Zhu Y  Wang L 《色谱》2012,30(4):345-349
基于中空纤维液相微萃取技术,建立了河流污水中两种芳香胺类物质(邻甲苯胺和对氯苯胺)的离子色谱分析方法。采用中空纤维液相微萃取和离子色谱联用技术,对中空纤维萃取条件进行优化。优化的萃取条件:萃取溶剂为正辛醇,供体相中NaOH的浓度为0.01mol/L, NaCl的浓度为500g/L,接受相中HCl的浓度为0.1 mol/L,搅拌速度为430r/min,萃取时间为30min,在优化条件下,邻甲苯胺的富集倍数为88倍,对氯苯胺的富集倍数为124倍。供体相中邻甲苯胺和对氯苯胺的浓度在0.005–0.1mg/L范围内成良好线性,相关系数为0.9998-0.9999 ,检出限为0.2-0.5μg /L,相对标准偏差为0.85-3.38 %。结论:这种方法操作简单,环境友好,提高了离子色谱检测芳香胺类物质的灵敏度。  相似文献   

15.
A novel on-line coupled capillary electrophoresis (CE) cold vapor generation (CVG) with electrothermal quartz tube furnace atomic absorption spectrometry (EQTF-AAS) system for mercury speciation has been developed. The mercury species (inorganic mercury and methylmercury) were completely separated by CE in a 80 cm length × 100 μm i.d. fused-silica capillary at 20 kV and using a buffer of 100 mM boric acid and 10% (v/v) methanol (pH 8.30). The effects of the inner diameter of quartz tube, the acidity of HCl, the NaBH4 concentration and N2 flow rate on Hg signal intensity were investigated. Speciation of mercury was highlighted using CE-CVG-EQTF-AAS. The detection limits of methylmercury and mercury were 0.035 and 0.027 μg mL−1, respectively. The precisions (RSDs) of peak height for six replicate injections of a mixture of 10 μg mL−1 (as Hg) were better than 4%. The interface was used for speciation analysis of mercury in dry goldfish muscle.  相似文献   

16.
Inorganic mercury and methylmercury are determined in natural waters by injecting the filtered samples onto a low cost commercial flow injection system in which an anion exchange microcolumn is inserted after the injection loop (FIA-IE). If hydrochloric acid is used as the carrier solution, the HgCl4(2-) species (inorganic mercury) will be retained by the anion exchanger while the CH3HgCI species (methylmercury) will flow through the resin with negligible retention. Four anion exchangers and seven elution agents were checked, in a batch mode, to search for the best conditions for optimal separation and elution of both species. Dowex M-41 and L-cysteine were finally selected. Mercury detection was performed by cold vapour-electrothermal atomic adsorption spectrometry (HG-ETAAS). Both systems were coupled to perform the continuous on-line separation/detection of both inorganic mercury and methylmercury species. Separation and detection conditions were optimized by two chemometric approaches: full factorial design and central composite design. A limit of detection of 0.4 microg L(-1) was obtained for both mercury species (RSD < 3.0% for 20 microg L(-1) inorganic and methylmercury solutions). The method was applied to mercury speciation in natural waters of the Nerbioi-lbaizabal estuary (Bilbao, North of Spain) and recoveries of more than 95% were obtained.  相似文献   

17.
Jairo L. Rodrigues 《Talanta》2010,80(3):1158-162
Despite the necessity to differentiate chemical species of mercury in clinical specimens, there are a limited number of methods for this purpose. Then, this paper describes a simple method for the determination of methylmercury and inorganic mercury in blood by using liquid chromatography with inductively coupled mass spectrometry (LC-ICP-MS) and a fast sample preparation procedure. Prior to analysis, blood (250 μL) is accurately weighed into 15-mL conical tubes. Then, an extractant solution containing mercaptoethanol, l-cysteine and HCl was added to the samples following sonication for 15 min. Quantitative mercury extraction was achieved with the proposed procedure. Separation of mercury species was accomplished in less than 5 min on a C18 reverse-phase column with a mobile phase containing 0.05% (v/v) mercaptoethanol, 0.4% (m/v) l-cysteine, 0.06 mol L−1 ammonium acetate and 5% (v/v) methanol. The method detection limits were found to be 0.25 μg L−1 and 0.1 μg L−1 for inorganic mercury and methylmercury, respectively. Method accuracy is traceable to Standard Reference Material (SRM) 966 Toxic Metals in Bovine Blood from the National Institute of Standards and Technology (NIST). The proposed method was also applied to the speciation of mercury in blood samples collected from fish-eating communities and from rats exposed to thimerosal. With the proposed method there is a considerable reduction of the time of sample preparation prior to speciation of Hg by LC-ICP-MS. Finally, after the application of the proposed method, we demonstrated an interesting in vivo ethylmercury conversion to inorganic mercury.  相似文献   

18.
黄会秋  黄莉来  夏坪 《色谱》2016,34(9):918-924
建立了同时测定水产品中甲基汞和无机砷的水相衍生-气相色谱-质谱联用分析方法。采用6 mol/L盐酸超声辅助提取水产品中的甲基汞与无机砷,于-10℃冷冻离心后,提取液中的无机砷(As3+与As5+)与2,3-二巯基丙醇(BAL)溶液于35℃水浴中衍生反应30 min,用甲苯萃取衍生物与甲基汞,萃取前加入无水乙醇避免非脂成分进入有机相中,向甲苯萃取液中添加甲基汞的衍生剂四苯硼钠溶液(pH 3.6)。采用选择离子监测(SIM)模式,外标法测定水产品中的甲基汞与无机砷。结果表明,水产品中甲基汞与无机砷在5~2000 μg/L范围内线性关系良好,相关系数(r)均大于0.999;检出限为0.7~3 μg/kg (S/N=3)。在10、100、1000 μg/kg加标水平下,方法加标回收率为80.0%~110.0%,相对标准偏差(n=6)为2.5%~9.4%。该方法操作简便、准确、灵敏度高,已成功应用于水产品中无机砷与甲基汞的食品污染物风险监测中。  相似文献   

19.
采用密闭微波辅助法(PMAE)提取还亮草中的硬飞燕草碱和巴比翠雀碱。采用单因素试验结合正交试验方法对微波实验条件进行优化。得到硬飞燕草碱和巴比翠雀碱的最佳提取方案:药物颗粒度100目,固液比1∶60,微波温度80℃,微波功率560 W,微波时间10 min。以甲醇-0.2%三乙胺(45∶55)为流动相,建立了高效液相色谱(HPLC)测定硬飞燕草碱和巴比翠雀碱含量的方法。硬飞燕草碱和巴比翠雀碱分别在0.50~50.0,0.30~30.0 mg/L范围内呈良好的线性关系,回收率为98.3%~104.5%,相对标准偏差(RSD)分别为2.0%和2.2%。与传统溶剂回流法(SRE)进行比较,该方法简单、提取率更高。  相似文献   

20.
Sample preparation methods for non-separation cold vapor atomic absorption spectrometry (CVAAS) sequential inorganic mercury speciation in biological certified reference materials (CRMs) were investigated. The methylmercury concentration was calculated as the difference between total and inorganic mercury. Microwave-assisted decomposition method, and three ultrasonic extraction procedures based on acid leaching with HCl and HCOOH and solubilization with TMAH were employed as sample preparation methods. The replacement of a sample decomposition procedure by extraction prior to analysis by CVAAS, as well as the aspect of speciation analysis is discussed. The limits of detection in the sample were determined as 50 and 10 ng L−1 for inorganic and total mercury, which corresponds to absolute detection limits of 40 and 8 ng g−1 for inorganic and total mercury, respectively. The results were in good agreement with the 95% confidence level t-test of the certified values for total and inorganic mercury in the reference materials investigated. From the analysis of the CRMs, it was evident that the difference between the total and inorganic mercury concentrations agrees with the methylmercury concentration. The relative standard deviation was better than 11% for most of the samples.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号