首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The stability properties of three particular boundary value methods (BVMs) for the solution of initial value problems are considered. Our attention is focused on the BVMs based on the midpoint rule, on the Simpson method and on an Adams method of order 3. We investigate their BV-stability regions by considering the scalar test problem and constant stepsize. The study of the conditioning of the coefficient matrix of the discrete problem is extended to the case of variable stepsize and block ODE problems. We also analyse an appropriate choice for the stepsize for stiff problems. Numerical tests are reported to evidentiate the effectiveness of the BVMs and the differences among the BVMs considered.Work supported by the Ministero della Ricerca Scientifica, 40% project, and C.N.R. (contract of research # 92.00535.01).  相似文献   

2.
In this paper, the optimal order of non-confluent Diagonally Implicit Runge-Kutta (DIRK) methods with non-zero weights is examined. It is shown that the order of aq-stage non-confluent DIRK method with non-zero weights cannot exceedq+1. In particular the optimal order of aq stage non-confluent DIRK method with non-zero weights isq+1 for 1q5. DIRK methods of orders five and six in four and five stages respectively are constructed. It is further shown that the optimal order of a non-confluentq stage DIRK method with non-zero weights isq, forq6.  相似文献   

3.
Summary This paper concerns the analysis of implicit Runge-Kutta methods for approximating the solutions to stiff initial value problems. The analysis includes the case of (nonlinear) systems of differential equations that are essentially more general than the classical test equationU=U (with a complex constant). The properties of monotonicity and boundedness of a method refer to specific moderate rates of growth of the approximations during the numerical calculations. This paper provides necessary conditions for these properties by using the important concept of algebraic stability (introduced by Burrage, Butcher and by Crouzeix). These properties will also be related to the concept of contractivity (B-stability) and to a weakened version of contractivity.  相似文献   

4.
Summary In this paper we study stability and convergence properties of linearly implicit Runge-Kutta methods applied to stiff semi-linear systems of differential equations. The stability analysis includes stability with respect to internal perturbations. All results presented in this paper are independent of the stiffness of the system.  相似文献   

5.
A natural Runge-Kutta method is a special type of Runge-Kutta method for delay differential equations (DDEs); it is known that any one-step collocation method is equivalent to one of such methods. In this paper, we consider a linear constant-coefficient system of DDEs with a constant delay, and discuss the application of natural Runge-Kutta methods to the system. We show that anA-stable method preserves the asymptotic stability property of the analytical solutions of the system.  相似文献   

6.
It is well known that high stage order is a desirable property for implicit Runge-Kutta methods. In this paper it is shown that it is always possible to construct ans-stage IRK method with a given stability function and stage orders−1 if the stability function is an approximation to the exponential function of at least orders. It is further indicated how to construct such methods as well as in which cases the constructed methods will be stiffly accurate.  相似文献   

7.
P-stability is an analogous stability property toA-stability with respect to delay differential equations. It is defined by using a scalar test equation similar to the usual test equation ofA-stability. EveryP-stable method isA-stable, but anA-stable method is not necessarilyP-stable. We considerP-stability of Runge-Kutta (RK) methods and its variation which was originally introduced for multistep methods by Bickart, and derive a sufficient condition for an RK method to have the stability properties on the basis of an algebraic characterization ofA-stable RK methods recently obtained by Schere and Müller. By making use of the condition we clarify stability properties of some SIRK and SDIRK methods, which are easier to implement than fully implicit methods, applied to delay differential equations.  相似文献   

8.
Recently Bellen, Jackiewicz and Zennaro have studied stability properties of Runge-Kutta (RK) methods for neutral delay differential equations using a scalar test equation. In particular, they have shown that everyA-stable collocation method isNP-stable, i.e., the method has an analogous stability property toA-stability with respect to the test equation. Consequently, the Gauss, Radau IIA and Lobatto IIIA methods areNP-stable. In this paper, we examine the stability of RK methods based on classical quadrature by a slightly different approach from theirs. As a result, we prove that the Radau IA and Lobatto IIIC methods equipped with suitable continuous extensions are alsoNP-stable by virtue of fundamental notions related to those methods such as simplifying conditions, algebraic stability, and theW-transformation.  相似文献   

9.
Under the assumption that an implicit Runge-Kutta method satisfies a certain stability estimate for linear systems with constant coefficientsl 2-stability for nonlinear systems is proved. This assumption is weaker than algebraic stability since it is satisfied for many methods which are not evenA-stable. Some local smoothness in the right hand side of the differential equation is needed, but it may have a Jacobian and higher derivatives with large norms. The result is applied to a system derived from a strongly nonlinear parabolic equation by the method of lines.  相似文献   

10.
The theory of positive real functions is used to provide bounds for the largest possible disk to be inscribed in the stability region of an explicit Runge-Kutta method. In particular, we show that the closed disk |+r| r can be contained in the stability region of an explicitm-stage Runge-Kutta method of order two if and only ifr m – 1.  相似文献   

11.
The concept of suitability means that the nonlinear equations to be solved in an implicit Runga-Kutta method have a unique solution. In this paper, we introduce the concept of D-suitability and show that previous results become special cases of ours. In addition, we also give some examples to illustrate the D-suitability of a matrixA.  相似文献   

12.
In addition to their usefulness in the numerical solution of initial value ODE's, the implicit Runge-Kutta (IRK) methods are also important for the solution of two-point boundary value problems. Recently, several classes of modified IRK methods which improve significantly on the efficiency of the standard IRK methods in this application have been presented. One such class is the Averaged IRK methods; a member of the class is obtained by applying an averaging operation to a non-symmetric IRK method and its reflection. In this paper we investigate the forms of the error expressions for reflected and averaged IRK methods. Our first result relates the expression for the local error of the reflected method to that of the original method. The main result of this paper relates the error expression of an averaged method to that of the method upon which it is based. We apply these results to show that for each member of the class of the averaged methods, there exists an embedded lower order method which can be used for error estimation, in a formula-pair fashion.This work was supported by the Natural Science and Engineering Research Council of Canada.  相似文献   

13.
Partitioned adaptive Runge-Kutta methods and their stability   总被引:4,自引:0,他引:4  
Summary This paper deals with the solution of partitioned systems of nonlinear stiff differential equations. Given a differential system, the user may specify some equations to be stiff and others to be nonstiff. For the numerical solution of such a system partitioned adaptive Runge-Kutta methods are studied. Nonstiff equations are integrated by an explicit Runge-Kutta method while an adaptive Runge-Kutta method is used for the stiff part of the system.The paper discusses numerical stability and contractivity as well as the implementation and usage of such compound methods. Test results for three partitioned stiff initial value problems for different tolerances are presented.  相似文献   

14.
A class ofimplicit Runge-Kutta schemes for stochastic differential equations affected bymultiplicative Gaussian white noise is shown to be optimal with respect to global order of convergence in quadratic mean. A test equation is proposed in order to investigate the stability of discretization methods for systems of this kind. Herestability is intended in a truly probabilistic sense, as opposed to the recently introduced extension of A-stability to the stochastic context, given for systems with additive noise. Stability regions for the optimal class are also given.Partially supported by the Italian Consiglio Nazionale delle Ricerche.  相似文献   

15.
In this paper we present a new condition under which the systems of equations arising in the application of an implicit Runge-Kutta method to a stiff initial value problem, has unique solutions. We show that our condition is weaker than related conditions presented previously. It is proved that the Lobatto IIIC methods fulfil the new condition.  相似文献   

16.
A family of formulae for the sympletic IRK method is investigated. Specifically, focus is given to general solutions for formula parameters of IRK under the symplectic and the order conditions. Examples of such formulae are constructed for up to three stages.  相似文献   

17.
Dissipativity of Runge-Kutta methods in Hilbert spaces   总被引:10,自引:0,他引:10  
This paper concerns the discretization by Runge-Kutta methods of the initial value problemu t =f(u), under the dissipative structural condition that there exist α≥0, β>0, such thatf:W→H, ℜe, ∀wW, for complex Hilbert spacesW⊆H. It is shown that strong A-stability is necessary to ensure the dissipativity of the method, whilst algebraic stability plus |R(∞)|<1 is a sufficient condition in the case of DJ-irreducible methods.  相似文献   

18.
Contractivity of Runge-Kutta methods   总被引:7,自引:0,他引:7  
In this paper we present necessary and sufficient conditions for Runge-Kutta methods to be contractive. We consider not only unconditional contractivity for arbitrary dissipative initial value problems, but also conditional contractivity for initial value problems where the right hand side function satisfies a circle condition. Our results are relevant for arbitrary norms, in particular for the maximum norm.For contractive methods, we also focus on the question whether there exists a unique solution to the algebraic equations in each step. Further we show that contractive methods have a limited order of accuracy. Various optimal methods are presented, mainly of explicit type. We provide a numerical illustration to our theoretical results by applying the method of lines to a parabolic and a hyperbolic partial differential equation.Research supported by the Netherlands Organization for Scientific Research (N.W.O.) and the Royal Netherlands Academy of Arts and Sciences (K.N.A.W.)  相似文献   

19.
A new technique to calculate the characteristic functions and to examine theA-stability of implicit Runge-Kutta processes is presented. This technique is based on a direct algebraic approach and an application of theC-polynomial theory of Nørsett. New processes are suggested. These processes can be exponentially fitted in anA-stable manner.  相似文献   

20.
The polynomial associated with the largest disk of stability of anm-stage explict Runge-Kutta method of orderp is unique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号