首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The beforehand unclear relation between the viscous-inviscid interaction and the instability of viscous gas flows is illustrated using three-dimensional boundary-layer perturbations in the case of sub- and supersonic outer flows. The assumptions are considered under which asymptotic boundary layer equations with self-induced pressure are derived and the excitation mechanisms of eigenmodes (i.e., Tollmien-Schlichting waves) are described. The resulting dispersion relations are analyzed. The boundary layer in a supersonic flow is found to be stable with respect to two-dimensional perturbations, whereas, in the three-dimensional case, the modes become unstable. The increment of growth is investigated as a function of the Mach number and the orientation of the front of a three-dimensional Tollmien-Schlichting wave.  相似文献   

2.
The derivation of macroscopic models for particle-laden gas flows is reviewed. Semi-implicit and Newton-like finite element methods are developed for the stationary two-fluid model governing compressible particle-laden gas flows. The Galerkin discretization of the inviscid fluxes is potentially oscillatory and unstable. To suppress numerical oscillations, the spatial discretization is performed by a high-resolution finite element scheme based on algebraic flux correction. A multidimensional limiter of TVD type is employed. An important goal is the efficient computation of stationary solutions in a wide range of Mach numbers. This is a challenging task due to oscillatory correction factors associated with TVD-type flux limiters and the additional strong nonlinearity caused by interfacial coupling terms. A semi-implicit scheme is derived by a time-lagged linearization of the nonlinear residual, and a Newton-like method is obtained in the limit of infinite CFL numbers. The original Jacobian is replaced by a low-order approximation. Special emphasis is laid on the numerical treatment of weakly imposed boundary conditions. It is shown that the proposed approach offers unconditional stability and faster convergence rates for increasing CFL numbers. The strongly coupled solver is compared to operator splitting techniques, which are shown to be less robust.  相似文献   

3.
Recurrence formulas are obtained for the kth term of the long wavelength asymptotics in the stability problem for two-dimensional viscous incompressible shear flows with a nonzero average. It is shown that the critical eigenvalues are odd functions of the wave number, while the critical values of the viscosity are even functions. If the deviation of the velocity from its period-average value is an odd function of spatial variable, the eigenvalues can be found exactly.  相似文献   

4.
研究了零攻角小钝头圆锥高超音速边界层的稳定性及转捩预测问题.小钝头的球头半径为0.5 mm,锥的半锥角为5°,来流马赫数为6.采用直接数值模拟方法得到了钝锥的基本流场,利用线性稳定性理论分析了等温壁面和绝热壁面条件下的第一、第二模态不稳定波,并用“e-N”方法对转捩位置进行了预测.在没有实验给出N值的情况下,暂取N为10.研究发现,壁面温度条件对于转捩位置有较大影响.绝热边界层的转捩位置比等温边界层的靠后.且尽管高马赫数下第二模态波的最大增长率远大于第一模态波的最大增长率,但绝热边界层的转捩位置是由第一模态不稳定波决定的.研究方法应能推广到有攻角的三维边界层流动的转捩预测.  相似文献   

5.
A stability of nearly limiting Stokes waves to superharmonic perturbations is considered numerically in approximation of an infinite depth. Investigation of the stability properties can give one an insight into the evolution of the Stokes wave. The new, previously inaccessible branches of superharmonic instability were investigated. Our numerical simulations suggest that eigenvalues of linearized dynamical equations, corresponding to the unstable modes, appear as a result of a collision of a pair of purely imaginary eigenvalues at the origin, and a subsequent appearance of a pair of purely real eigenvalues: a positive and a negative one that are symmetric with respect to zero. Complex conjugate pairs of purely imaginary eigenvalues correspond to stable modes, and as the steepness of the underlying Stokes wave grows, the pairs move toward the origin along the imaginary axis. Moreover, when studying the eigenvalues of linearized dynamical equations we find that as the steepness of the Stokes wave grows, the real eigenvalues follow a universal scaling law, that can be approximated by a power law. The asymptotic power law behavior of this dependence for instability of Stokes waves close to the limiting one is proposed. Surface elevation profiles for several unstable eigenmodes are made available through  http://stokeswave.org website.  相似文献   

6.
The problem of the flow of a uniform supersonic ideal (inviscid and non-heat-conducting) gas over a wedge is considered. If the turning angle of the flow, which is equal to the angle of inclination of the generatrix of the wedge, is less than the maximum value, the problem has two solutions. In the solution with an oblique low-intensity (“weak”) shock, the uniform flow between the shock and the wedge is almost always supersonic. One exception is a small vicinity of the maximum turning angle. For an ideal gas this vicinity does not exceed a fraction of a degree at all Mach numbers. Behind a high-intensity (“strong”) shock, the flow of an ideal gas is always subsonic. “Weak” shocks are observed in all experiments with finite wedges. Some researchers attribute this preference to the “downstream” boundary conditions (“on the right at infinity” for a flow incident on the wedge from the left), and others attribute it to the instability (“Lyapunov” instability) of a flow with a strong shock when it flows over the wedge and to the stability of flow with a weak shock. The results presented below from calculations of the flows that occur for finite wedges within the two-dimensional unsteady Euler equations, when the parameters behind the strong shock are specified on the right-hand boundary, i.e., on the arc of a circle between the wedge and the shock, demonstrate the correctness of the conclusion of the first group of researchers and the incorrectness of the conclusion of the other group. In these calculations, after both small and fairly large perturbations, the flows investigated (which are, in fact, Lyapunov unstable!) return to the solution with a strong shock. In addition, the problem of steady flow over a wedge was regarded as the limit of the two-dimensional non-steady problems at infinite time. Simplification of one of them leads to the problem of the submerged over-expanded supersonic steady outflow. In the ideal gas model this problem is equivalent to flow over a wedge with both weak and strong shocks. All the solutions considered are stable.  相似文献   

7.
The linear stability problem is under study for steady axisymmetric translational flows of a density-homogeneous nonviscous incompressible ideal conducting fluid with free surface and “frozen-in” poloidal magnetic field. By the direct Lyapunov method, some sufficient conditions are obtained for the stability of these flows under small long-wave perturbations with the same symmetry. These stability conditions have partial converses; and, for unstable stationary flows, an a priori exponential lower bound is constructed on the growth of small perturbations under consideration, while the increment of the appearing exponent serves as an arbitrary positive parameter. An illustrative analytical example is given of steady flows with superimposed small long-wave axisymmetric perturbations growing in time in accordance with the estimate.  相似文献   

8.
B. Rembold  N.A. Adams  L. Kleiser 《PAMM》2002,1(1):280-281
The transition of a Mach 0.5 jet issuing from a rectangular nozzle with aspect ratio of 5 and a Reynolds number based on the smaller nozzle dimension of 2000 is simulated by Direct Numerical Simulations (DNS). We developed a high‐order simulation method for non‐axisymmetric jet flows solving the three‐dimensional compressible Navier‐Stokes equations. The transition process was triggered using a spatially evolving unstable mode from linear stability analysis at the inflow. A rapid breakup of the initially laminar jet to three‐dimensional small scale turbulence is found.  相似文献   

9.
In this paper, we study vibrational relaxation of CO molecules with excited electronic states. We consider three electronic terms and account for VV exchanges of vibrational energy within each electronic term, VT transitions of vibrational energy into a translational one, and VE exchange of vibrational energy between electronic terms. The initial vibrational state of the gas is strongly nonequilibrium. The effect of VE exchange on the vibrational relaxation of CO molecules is estimated for different kinds of initial vibrational distributions, in particular, the Treanor and Gordiets ones generalized for gases with electronically excited states. The set of equations of state-to-state vibrational kinetics, together with the gas dynamic equations, is solved numerically in the zero-order approximation of the Chapman–Enskog method for the case of spatially homogeneous relaxation. The following results are obtained: neglecting VE exchanges leads to an incorrect assessment of the number density for each electronic level; however, the error is small for the ground electronic state. It is shown that VE exchanges qualitatively affect the time dependence of the vibrational temperature.  相似文献   

10.
A weakly nonlinear stability analysis is performed to search for the effects of compressibility on a mode of instability of the three-dimensional boundary layer flow due to a rotating disk. The motivation is to extend the stationary work of [ 1 ] (hereafter referred to as S90) to incorporate into the nonstationary mode so that it will be investigated whether the finite amplitude destabilization of the boundary layer is owing to this mode or the mode of S90. Therefore, the basic compressible flow obtained in the large Reynolds number limit is perturbed by disturbances that are nonlinear and also time dependent. In this connection, the effects of nonlinearity are explored allowing the finite amplitude growth of a disturbance close to the neutral location and thus, a finite amplitude equation governing the evolution of the nonlinear lower branch modes is obtained. The coefficients of this evolution equation clearly demonstrate that the nonlinearity is destabilizing for all the modes, the effect of which is higher for the nonstationary waves as compared to the stationary waves. Some modes particularly having positive frequency, regardless of the adiabatic or wall heating/cooling conditions, are always found to be unstable, which are apparently more important than those stationary modes determined in S90. The solution of the asymptotic amplitude equation reveals that compressibility as the local Mach number increases, has the influence of stabilization by requiring smaller initial amplitude of the disturbance for the laminar rotating disk boundary layer flow to become unstable. Apart from the already unstable positive frequency waves, perturbations with positive frequency are always seen to compete to lead the solution to unstable state before the negative frequency waves do. Also, cooling the surface of the disk will be apparently ineffective to suppress the instability mechanisms operating in this boundary layer flow.  相似文献   

11.
In this article the incompressible limits of weak solutions to the governing equations for magnetohydrodynamics flows on both bounded and unbounded domains are established. The governing equations for magnetohydrodynamic flows are expressed by the full Navier-Stokes system for compressible fluids enhanced by forces due to the presence of the magnetic field as well as the gravity and with an additional equation which describes the evolution of the magnetic field. The scaled analogues of the governing equations for magnetohydrodynamic flows involve the Mach number, Froude number and Alfven number. In the case of bounded domains the establishment of the singular limit relies on a detail analysis of the eigenvalues of the acoustic operator, whereas the case of unbounded domains is being treated by their suitable approximation by a family of bounded domains and the derivation of uniform bounds.  相似文献   

12.
Real gas effects in condensing nozzle flows are discussed by the virial equation of state truncated after the second virial coefficient. The thermal choking conditions in nozzles previously derived for a perfect condensible vapor are generalized to include real gas effects. For these cases it is shown that the critical amount of heat necessary to thermally choke the flow can be defined explicitly only for the expansion of a pure vapor.Alexander von Humboldt Fellow.The flow Mach number is usually taken as the local frozen Mach number.  相似文献   

13.
This paper shows that the stability or nonstability of switched systems does not depend on the eigenvalues of the matrices. The result is obtained by giving examples of no stable (resp. no unstable) switched linear systems consisting of stable (resp. unstable) matrices. Moreover, for the first time all kinds of eigenvalues are considered, as well as two general results for establishing the stability or nonstability of switched linear systems are presented.  相似文献   

14.
低Mach数流动中,基于可压缩流动的数值模拟算法存在严重的刚性问题,预处理方法可以有效地解决这一问题,但其计算结果不稳定.基于原有的预处理Roe格式,引入可调节参数,得到一种新的低耗散格式.该格式可以减弱边界层以及极低速区域的过度耗散,使得整个流场计算稳定.低Mach数、低Reynolds数定常圆柱绕流和低Mach数、高Reynolds数翼型(NACA0012和S809)绕流3个验证算例表明,带可调节参数的低耗散预处理方法正确可靠,是低速流动数值模拟的有效方法.  相似文献   

15.
The propagation of a spherical shock wave in a non‐ideal gas with or without gravitational effects is investigated under the action of monochromatic radiation. Similarity solutions are obtained for adiabatic flow between the shock and the piston. The numerical solutions are obtained using the Runge‐Kutta method of the fourth order. The density of the gas is assumed to be constant. The total energy of the shock wave is non‐constant and varies with time. The effects of change in values of non‐idealness parameter, gravitational parameter, shock Mach number, radiation parameter, and adiabatic exponent of the gas on shock strength and flow variables are worked out in detail. It is investigated that the presence of gravitational field increases the compressibility of the medium, due to which it is compressed and, therefore, the distance between the inner contact surface and the shock surface is reduced. A comparison is also made between the solutions in the cases of the gravitating and the non‐gravitating media. It is manifested that the gravitational parameter and the radiation parameter have in general opposite behaviour on the flow variables and the shock strength.  相似文献   

16.
Recurrence formulas are obtained for the kth term of the long wavelength asymptotics in the stability problem for general two-dimensional viscous incompressible shear flows. It is shown that the eigenvalues of the linear eigenvalue problem are odd functions of the wave number, while the critical values of viscosity are even functions. If the velocity averaged over the long period is nonzero, then the loss of stability is oscillatory. If the averaged velocity is zero, then the loss of stability can be monotone or oscillatory. If the deviation of the velocity from its period-average value is an odd function of spatial variable about some x 0, then the expansion coefficients of the velocity perturbations are even functions about x 0 for even powers of the wave number and odd functions about for x 0 odd powers of the wave number, while the expansion coefficients of the pressure perturbations have an opposite property. In this case, the eigenvalues can be found precisely. As a result, the monotone loss of stability in the Kolmogorov flow can be substantiated by a method other than those available in the literature.  相似文献   

17.
The normal mode instability study of a steady Rossby‐Haurwitz wave is considered both theoretically and numerically. This wave is exact solution of the nonlinear barotropic vorticity equation describing the dynamics of an ideal fluid on a rotating sphere, as well as the large‐scale barotropic dynamics of the atmosphere. In this connection, the stability of the Rossby‐Haurwitz wave is of considerable mathematical and meteorological interest. The structure of the spectrum of the linearized operator in case of an ideal fluid is studied. A conservation law for perturbations to the Rossby‐Haurwitz wave is obtained and used to get a necessary condition for its exponential instability. The maximum growth rate of unstable modes is estimated. The orthogonality of the amplitude of a non‐neutral or non‐stationary mode to the Rossby‐Haurwitz wave is shown in two different inner products. The analytical results obtained are used to test and discuss the accuracy of a numerical spectral method used for the normal mode stability study of arbitrary flow on a sphere. The comparison of the numerical and theoretical results shows that the numerical instability study method works well in case of such smooth solutions as the zonal flows and Rossby‐Haurwitz waves. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2005  相似文献   

18.
Nowadays, economical extraction of the oil and gas, and their products is an important problem. Up to now, vertical wells have been used for oil extraction but some wells exist that they cannot be reached by using the vertical drilling. Horizontal and directional drillings are some techniques to reach these wells. In this article, dynamics of the horizontal drill string is studied. According to the forces that affect the dynamics of drilling, its longitudinal vibration is analyzed. After determination of the boundary conditions and normal modes of the system with using mode summation method, displacement of the bit is obtained. Finally, dynamics of the horizontal drill string is simulated and the effect of increasing the number of modes and the mode convergence phenomenon is discussed. Through this study, while it is shown that four modes are sufficient for a reliable prediction of the stable and unstable conditions; five modes are included for the system analysis. Then, the effects of other parameters such as the mud frequency and constants of bit/rock interaction model are studied. Through the proposed parametric study, the stability of the system is investigated. Moreover, the dominant modes which cause the instability of the horizontal drilling process are determined.  相似文献   

19.
It is shown that for an appropriate class of dissipatively perturbed Hamiltonian systems, the number of unstable modes of the dynamics linearized at a nondegenerate equilibrium is determined solely by the index of the equilibrium regarded as a critical point of the Hamiltonian. In addition, the movement of the associated eigenvalues in the limit of vanishing dissipation is analyzed. ©1995 John Wiley & Sons, Inc.  相似文献   

20.
Tollmien–Schlichting waves can be analyzed using the Prandtl equations involving selfinduced pressure. This circumstance was used as a starting point to examine the properties of the dispersion relation and the eigenmode spectrum, which includes modes with amplitudes increasing with time. The fact that the asymptotic equations for a nonclassical boundary layer (near the lower branch of the neutral curve) have unstable fluctuation solutions is well known in the case of subsonic and transonic flows. At the same time, similar solutions for supersonic external flows do not contain unstable modes. The bifurcation pattern of the behavior of dispersion curves in complex domains gives a mathematical explanation of the sharp change in the stability properties occurring in the transonic range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号