首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For semicrystalline polymers there is an ongoing debate at what temperature the immobilized or rigid amorphous fraction (RAF) devitrifies (relaxes). The question if the polymer crystals are melting first and simultaneously the RAF devitrifies or the RAF devitrifies first and later on the crystals melt cannot be answered easily on the example of semicrystalline polymers. This is because the crystals, which are the reason for the immobilization of the polymer, often disappear (melt) in the same temperature range as the RAF. For polymer nanocomposites the situation is simpler. Silica nanoparticles do not melt or undergo other phase transitions altering the polymer-nanoparticle interaction in the temperature range where the polymer is thermally stable (does not degrade). The existence of an immobilized fraction in PMMA SiO2 nanocomposites was shown on the basis of heat capacity measurements at the glass transition of the polymer. The results were verified by enthalpy relaxation experiments below the glass transition. The immobilized layer is about 2 nm thick at low filler content if agglomeration is not dominant. The thickness of the layer is similar to that found in semicrystalline polymers and independent from the shape of the nanoparticles. Nanocomposites therefore offer a unique opportunity to study the devitrification of the immobilized fraction (RAF) without interference of melting of crystals as in semicrystalline polymers. It was found that the interaction between the SiO2 nanoparticles and the PMMA is so strong that no devitrification occurs before degradation of the polymer. No gradual increase of heat capacity or a broadening of the glass transition was found. The cooperatively rearranging regions (CRR) are either immobilized or mobile. No intermediate states are found. The results obtained for the polymer nanocomposites support the view that the reason for the restricted mobility must disappear before the RAF can devitrify. For semicrystalline polymers this means that rigid crystals must melt before the RAF can relax.  相似文献   

2.
Free volume properties of a series of poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV) membranes, which were produced by various nonisothermal crystallization processes (rapid‐, step‐, and slow‐cooling processes), were investigated using positron annihilation lifetime (PAL) spectroscopy over a temperature range of 25–90 °C. From the annihilation lifetime parameters, the temperature dependence of free volume size, amount, size distribution, and fractional free volume and thermal expansion properties of free volume were discussed. A model which assumed that amorphous phase was subdivided into mobile and rigid amorphous fractions (MAF and RAF) in the semicrystalline polymer was considered to interpret the temperature dependence of those free volume properties. Morphological observation of the semicrystalline polymer by small‐angle X‐ray scattering (SAXS) indicated that the rapid‐cooled (cold‐crystallized) membranes showed a much thinner thickness of the repeating lamellar/amorphous layers and most likely higher amount of RAF, which restrained the chain motion, than the step‐ and slow‐cooled (melt‐crystallized) membranes. The difference of free volume properties among various PHBV membranes was created according to the crystalline structure of the polymer from different thermal history. The polymer crystallized with slower cooling rate induced higher crystallinity and resulted in less free volume amount and lower fractional free volume. In addition, the thermal expansion coefficients of free volume size were affected by the crystallization rate of PHBV polymer. Larger distribution of the free volume size of melt‐crystallized membranes was observed as a result of the bimodal distribution of the lamellar periodicity and less amount of RAF than that of the cold‐crystallized membranes. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 855–865, 2009  相似文献   

3.
4.
5.
聚乳酸(PLA)是目前合成生物可降解高分子材料中应用量最大的品种,可望逐渐部分取代聚烯烃而更广泛应用于各个领域。但PLA树脂结构决定的松弛特性导致其加工过程特殊的黏弹特性,使其熔体强度低、成型工艺特性不稳定并进而导致产品尺寸和性能不稳定。此外,PLA极低的结晶速率,使其在挤出和注射成型等较高冷却速率的实际加工条件下呈无定型态,进一步影响了其加工和使用性能。这些问题已成为PLA更大规模商品化应用的瓶颈。本文从通过调控PLA熔体加工过程的黏弹特性而提高其可加工性出发,综述近年来本课题组在PLA成型加工过程中熔体粘弹特性和结晶行为(结晶速率和结晶结构)调控方面的研究进展。  相似文献   

6.
Polylactide (PLA)‐layered silicate nanocomposites plasticized with 20 wt % of poly(ethylene glycol) 1000 were prepared by melt blending. Three kinds of organo‐modified montmorillonites—Cloisite® 20A, Cloisite® 25A, and Cloisite® 30B—were used as fillers at a concentration level varying from 1–10 wt %. Neat PLA and plasticized PLA with the same thermomechanical history were considered for comparison. Nanocomposites based on amorphous PLA were obtained via melt‐quenching. The influence of both plasticization and nanoparticle filling on the physicochemical properties of the nanocomposites were investigated. Characterization of the systems was achieved by size exclusion chromatography (SEC), thermogravimetric analysis (TGA), thermally modulated differential scanning calorimetry (TMDSC), X‐ray diffraction (XRD), and dynamic mechanical analysis (DMTA). SEC revealed a decrease of the molecular weight of the PLA matrix with the filler content. Thermal behavior on heating showed one cold crystallization process in the reference neat PLA sample, while two cold crystallization processes in plasticized PLA and plasticized nanocomposites. The thermal windows of these processes tend to increase with the filler content. The crystalline form of PLA developed upon heating was affected neither by the plasticization nor by the type and content of Cloisite used. It was found that the series of organo‐modified montmorillonites with decreasing affinity to PLA is Cloisite® 30B, Cloisite® 20A, and Cloisite® 25A, respectively. The dynamic mechanical properties were sensitive to the sample composition. Generally, the storage modulus increased with the filler content. Glassy PEG, well dispersed within unfilled PLA matrix, exhibited also a reinforcing effect, since the storage modulus of this sample was higher than for unplasticized reference at temperature region below the glass transition of PEG. Moreover, loss modulus of all plasticized samples revealed an additional maximum ascribed to the glass transition of PEG–rich dispersed phase, indicating partial miscibility of organic components of the systems investigated. The magnitude of this mechanical loss was correlated with the filler content, and to some extent, also with the nanofiller ability to be intercalated by polymer components. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 299–311, 2006  相似文献   

7.
The poly(lactic acid) (PLA)/montmorillonite (MMT) composites were prepared by melt blending in an internal mixer. The effect of MMT and organically modified MMT (OMMT) addition on crystallization and mechanical preferences has been studied. The DSC results show that the crystallization ability of PLA is improved by MMT or OMMT. The addition of MMT and OMMT increase the crystallinity of PLA from 27.3 to 32.8%, and the cold crystallization temperature (TCC) of PLA decreases from 93.1 to 88.9°C with the MMT. However, the nucleating effect of MMT is better than that of OMMT due to the velvety surface resulted from the organic modification. The average size of the spherulites in PLA/MMT is smaller than that in PLA/OMMT. The addition of MMT or OMMT increases the tensile strength of PLA from 29.6 to 34.7 MPa and decrease the elongation at break of PLA. The modulus of PLA composites is enhanced rapidly from 338 to 660 MPa by the addition of MMT.  相似文献   

8.
The superb heat resistance poly(lactic acid) (PLA) were prepared by blending PLA and poly(d ‐lactic acid) (PDLA) with various molecular weight (Mn). Formation of the stereocomplex in the blends was confirmed by differential scanning calorimetry and wide‐angle X‐ray diffraction. The results of the heat resistance implied it is possible that elevating the Vicat penetration temperature of PLA up to 150°C by blending with PDLA. The cold crystallization of homochiral crystallites is proven to be the critical factor affecting the heat resistance of PLA. While the PLA or PLA/PDLA blends were heated to cold crystallization temperature of samples, both the crystal content and the rigid amorphous region content are increased due to the cold crystallization and tethering effect, and the stiffness and heat resistance of the sample are improved. The cold crystallization homochiral crystallites kinetics of PLA and PLA/PDLA blends was also studied. The results showed the activation energy (?E) of cold crystallization increased from 120.30 kJ/mol to 144.66 kJ/mol with the increasing of PDLA content from 2% to 10%.  相似文献   

9.
Polylactide (PLA) composites with pristine cellulose nanocrystals (CNC) and acetylated one (aCNC) were prepared for the crystallization study. The roles of CNC and aCNC in cold and melt crystallization of PLA were explored. Both CNC and aCNC have good nucleation activity during cold crystallization of PLA, but also highly impede transport of adjacent chain segments to the growing surface, acting as the role of physical barrier in the glassy bulk. Within the experimental temperature range, growth dominates the overall kinetics, rather than nucleation. Therefore, barrier role overwhelms nucleation agent one and as a result, the cold crystallization rates of composites decrease as compared with neat PLA, accompanied by decreased degrees of crystallinity. During melt crystallization, although the presence of CNC and aCNC leads to sharply increased system viscosities, reducing chain mobility, nucleation is the dominant role as the systems crystallize from the melts. Thus, the presence of CNC and aCNC promotes melt crystallization of PLA, and the composites show far higher crystallization rates and degrees of crystallinity than neat PLA. Besides, the surface acetylation of CNC improves its nucleation ability during melt crystallization of PLA, and as a result, the composite with aCNC has denser fold surfaces relative to the one with CNC. But the presence of these two kinds of particles has no evident influence on the lamellar structure of PLA whether in the cold or in melt crystallization. This work can provide useful information on the crystallization control of PLA using CNC.  相似文献   

10.
The effect of wood flour (WF) as an efficient nucleating agent on the isothermal melt crystallization and isothermal cold crystallization behavior of poly(lactic acid) (PLA) was investigated by differential scanning calorimeter and polarized optical microscopy. It was found that the incorporation of 4 wt% WF promoted the crystallization of PLA about 4.2%. Polarized optical microscopy results showed the Maltese cross of the samples. The presence of the 4 wt% WF may increase the nucleation density, leading to the increase of the spherulites; however, the size of the spherulites decreased, and the structure became incomplete. The Avrami model was applied to analyze the isothermal crystallization kinetics. It is concluded that the addition of WF modified the crystallization process of PLA (the value of Avrami exponent changed). Various parameters, such as the crystallization half time and crystallization rate constant, reflect that 4 wt% WF significantly improves the crystallization process. The observations in this article indicate that WF is an efficient nucleating agent of PLA. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
Thermal and mechanical properties of polylactide (PLA) composites with different grades of calcium carbonate, 40 nm and 90 nm nanoparticles, and also with submicron particles, unmodified and modified with calcium stearate or stearic acid, obtained by melt mixing, were compared. Films with amorphous and crystalline matrices were prepared and examined.Tg of PLA in the composites remained unaffected whereas its cold crystallization was enhanced by the fillers and predominantly depended on filler content. Filling decreased thermal stability of the materials but their 5% weight loss temperatures well exceeded 250 °C, evidencing stability in the temperature range of PLA processing. The amorphous nanocomposites with modified nanoparticles exhibited improved drawability and toughness without a significant decrease of tensile strength; nearly two-fold increase of the elongation at break and tensile toughness was achieved at 5 wt% content of the modified nanofiller. Lack of surface modification of the filler, larger grain size with an average of 0.9 μm, and matrix crystallinity had a detrimental effect on the drawability. However, the presence of nanofillers and crystallinity improved tensile modulus of the materials by up to 15% compared to neat amorphous PLA.  相似文献   

12.
Polystyrene (PS) and poly(ethylene terephthalate) (PET) were blended together in the solid state via cryogenic mechanical attrition (CMA) and in the melt through conventional twin‐screw extrusion. CMA PS/PET blend morphologies were characterized both qualitatively and quantitatively through microscopy and thermal analysis. Specifically, CMA reduced the dispersed‐phase domain size and its distribution relative to simple melt extrusion, although not to the extent attained with added chemical compatibilizers. CMA also amorphized the PET phase and depressed the PET cold crystallization rate, which was measured by post‐CMA nonisothermal MDSC analysis. The PET amorphization efficiency and crystallizability for CMA PS/PET blends were the highest and lowest, respectively, at the PS/PET phase inversion. These concomitant phenomena are known to be caused by CMA‐induced PET crystal defect formation and subsequent entropic stabilization. Such behaviors are linked to the enhanced presence of an uncrystallizable rigid amorphous PET phase, and the weight fraction of this rigid amorphous fraction (RAF PET) was quantified and also maximized near the PS/PET phase inversion. Moreover, the increased compatibilization and amorphization efficiencies and reduced PET crystallizability were determined to be interdependent. These studies have verified that CMA of PET with PS is more efficient than extrusion due to the formation of nonequilibrium, metastable morphologies that can be more precisely controlled and better stabilized with an interesting, composition‐dependent interplay between PET crystallizability and the extent of PS/PET compatibilization. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1348–1359, 2008  相似文献   

13.
The isothermal crystallization behaviour of polylactic acid (PLA) and a clay nanocomposite of have been examined using differential scanning calorimetry. The data obtained clearly indicates that the presence of the nanocomposite particles in the composite material influences the crystallization kinetics of the PLA when crystallized both from the solid amorphous state as well as from the melt. When crystallized from the melt the presence of the clay nano-particles appears to be influencing the nucleation and crystal growth rate of the PLA such that the crystallization rate is enhanced by a factor of about 15 to 20. This result is of tremendous significance in identifying the processing window for the production of foamed nanocomposites from PLA. In addition the effect of thermal exposure at 200°C on the crystallization behaviour of these materials has been investigated, with the results suggesting that holding these materials at 200°C for periods of time up to 60 min in an inert atmosphere only has a marginal effect.  相似文献   

14.
The melting behavior of poly(L ‐lactic acid) film crystallized from the glassy state, either isothermally or nonisothermally, was studied by wide angle X‐ray diffraction (WAXD), small angle X‐ray scattering (SAXS), differential scanning calorimetry (DSC), and temperature‐modulated differential scanning calorimetry (TMDSC). Up to three crystallization and two melting peaks were observed. It was concluded that these effects could largely be accounted for on the basis of a “melt‐recrystallization” mechanism. When molecular weight is low, two melting endotherms are readily observed. But, without TMDSC, the double melting phenomena of high molecular weight PLLA is often masked by an exotherm just prior to the final melting, as metastable crystals undergo melt‐recrystallization during heating in the DSC. The appearance of a double cold‐crystallization peak during the DSC heating scan of amorphous PLLA film is the net effect of cold crystallization and melt‐recrystallization of metastable crystals formed during the initial cold crystallization. Samples cold‐crystallized at 80 and 90 °C did not exhibit a long period, although substantial crystallinity developed. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3200–3214, 2006  相似文献   

15.
Poly(lactic acid) (PLA) is an emerging material mainly because it can be synthesized from renewable resources and is thus environmentally and ecologically safe. The mechanical properties, above all the thermal resistance of PLA are determined by the crystalline content: the heat deflection temperature of crystalline PLA can reach 100 °C, whereas amorphous PLA loses mechanical properties at temperatures slightly higher than 60 °C. However, PLA has a low crystallization rate, so that after processing it remains mostly amorphous. This characteristic heavily limits the use of PLA for commercial applications. Many studies have been recently published on the crystallization kinetics of PLA. The effect of processing on this feature is however often neglected. In this work, the significance of processing on the crystallization kinetics of a commercial PLA was investigated. Two processing methods were explored: extrusion and injection moulding. The obtained materials, and the starting pellets of virgin polymer, were analyzed by calorimetry in order to obtain the crystallization kinetics. Two protocols were adopted to determine the crystallization rates during cooling from the melt or heating from the solid. The parameters of a kinetic equation were determined for all the materials and protocols adopted and it was thus possible to describe the evolution of crystallinity during heating and during cooling.  相似文献   

16.
The early stages of the cold crystallization process and the formation of a rigid amorphous phase as seen by the dielectric response of polylactide, PLA, and composites polylactide/carbon nanotubes, PLA/CNT, are studied here by broadband dielectric spectroscopy for CNT concentrations below percolation. The presence of precursors during the nucleation and crystallization process is demonstrated by the existence of a time shift between the decline in the number of mobile segments and the growth of a 3D ordered phase as seen by variable temperature wide angle X-ray scattering measurements. Also, the loss of the mobile amorphous phase is not justified by the slow lamellar growth in identical conditions. The variation of the molecular dynamics, either for short range reorientations or cooperative motions, is followed in both amorphous and semicrystalline states. The changes observed in the composites PLA/CNT show a moderate heterogeneous nucleating effect of the nanofiller and a sensitivity of the three subglass transitions to the chain ordering. The relaxation parameters of the segmental relaxation are not very sensitive to the presence either of lamellae or of the nanofiller.  相似文献   

17.
The phase structure of crystalline isotactic polystyrene (iPS) has been investigated with temperature‐modulated differential scanning calorimetry (TMDSC), wide‐angle X‐ray scattering (WAXS), and Fourier transform infrared (FTIR) spectroscopy. Quenched amorphous samples have been cold‐crystallized at 140 or 170 °C for various crystallization times. The degree of crystallinity obtained from WAXS, with the ratio of the crystal peak intensity to the total peak intensity, shows excellent agreement with the crystallinity determined from TMDSC total heat flow endotherms. For the first time, FTIR results show that the absorbance peak ratio (I/I) has a linear correlation with the crystalline mass fraction (χc) for cold‐crystallized iPS according to the following relation: I/I = 0.54χc + 0.16. This relationship allows the crystallinity of iPS to be determined from infrared spectroscopy analyses in cases in which it is difficult to perform thermal or X‐ray measurements. On the basis of the measurements of the heat capacity increment at the glass transition, we find that a significant amount of the rigid amorphous fraction (RAF) coexists with the crystalline and mobile amorphous phases in cold‐crystallized iPS. The RAF increases systematically with the crystallization time, and a greater amount is formed at a lower crystallization temperature. A three‐phase model (crystalline phase, mobile amorphous phase, and rigid amorphous phase) is, therefore, appropriate for the interpretation of the structure of cold‐crystallized iPS. The origin of the low‐temperature endothermic peak (annealing peak) has been investigated with TMDSC and FTIR spectroscopy and has been shown to be due to irreversible relaxation of the RAF. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 3026–3036, 2003  相似文献   

18.
The crystallization of PLA-silane surface-treated ZnO nanocomposites was investigated by DSC and compared to that of neat PLA. Several modes of crystallization were considered: isothermal and non-isothermal cold crystallization and also isothermal and non-isothermal melt crystallization. The kinetics of cold crystallization were studied using different methods, namely the Avrami and Ozawa-Flynn-Wall models, to calculate activation energies and kinetic constants. In contrast to what is typically observed when the foreign particles are added in a polymer matrix, the silane surface-treated ZnO delayed the crystallization of PLA and made it more difficult to start. The nucleation activity of the ZnO nanoparticles, ?, was calculated and found to be greater than 1 (? = 1.7). This indicated that ZnO played an anti-nucleating role in the crystallization of PLA nanocomposites. This effect has been linked mainly to the interactions between the silane groups onto the surface of nanoparticles and PLA macromolecules. These interactions which reduce the mobility of polymer chains have been evidenced by rheological experiments.  相似文献   

19.
Poly (lactic acid)/elastomer blends were prepared via direct injection molding. In non-isothermal crystallization scan, the crystallinity of PLA increased with a decrease in the heating and cooling rate. The melt crystallization of PLA appeared in the low cooling rate (1, 5 and 7.5°C/min). The presence of elastomer tended also to increase the crystallinity of PLA. However, it started to decrease in 30% of elastomer. It was also showed by the decreasing of cold crystallization activation energy. Elastomer also gave plasticization effect in PLA properties. Thermal treatment through annealing completed after 1 h at 80 °C. In isothermal crystallization scan, the cold crystallization rate increased with increasing crystallization temperature in the blends. The Avrami analysis showed that at low temperatures, the cold crystallization had two regime processes whereas at high temperature only one stage was observed.  相似文献   

20.
The structure and thermal behavior of cold-crystallized poly(trimethylene terephthalate) (PTT) are revealed in detail by DSC, AFM, TEM, and WAXD as well as in situ FTIR and SAXS techniques. There is no effect of crystallization temperature and initial state on the crystal modification, yet the morphology is strongly affected by these two factors. First, the small rod-like lamellae for PTT are obtained during the cold crystallization instead of the spherulites formed in the melt crystallization. Second, the edge-on lamellar orientation in thin films is identified during the cold crystallization. The thickness and the lateral width of rod-like lamellae get larger and larger with increasing crystallization temperature. Thin lamellar crystals assemble randomly when the cold-crystallization temperature is lower, while lamellar stacks composed of thicker lamellae are observed when the PTT was annealed at elevated temperature. Moreover, for the cold-crystallized PTT, the final melting temperature does not vary with the crystallization temperature. This phenomenon is explained by the structural improvement during the heating process. For the cold-crystallized PTT sample at lower temperature, three transitions occur when it is heated again: the relaxation of the rigid amorphous phase, the reorganization of molecules in the intermediate phase, and then the melt–recrystallization behavior. Those transitions finally lead to thicker lamellae besides a higher crystallinity before the final fusion. Therefore, the final melting peak of these lamellae is at the same temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号