首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper describes the self-assembly of small objects--polyhedral metal plates with largest dimensions of 10 to 30 microm--into highly ordered, three-dimensional arrays. The plates were fabricated using photolithography and electrodeposition techniques, and the faces of the plates were functionalized to be hydrophobic or hydrophilic using self-assembled monolayers (SAMs). Self-assembly occurs in water through capillary interactions between thin films of a hydrophobic liquid (a liquid prepolymer adhesive) coated onto the hydrophobic faces of the plates; coalescence of the adhesive films reduces the interfacial free energy of the system and drives self-assembly. By altering the size and surface-patterning of the plates, the external morphologies of the aggregates were varied. Curing the adhesive furnished mechanically stable aggregates that were characterized by scanning electron microscopy (SEM). For assemblies formed by plates partially composed of a sacrificial material, a subsequent etching step furnished fully open, three-dimensional microstructures. This work validates the use of capillary interactions for three-dimensional mesoscale self-assembly in the 10-microm-size regime and opens new avenues for the fabrication of complex, three-dimensional microscructures.  相似文献   

2.
This article describes a study of fumed silica particle layers adsorbed at the air-water interface. We have performed surface pressure, ellipsometry, and Brewster angle microscopy measurements. These determinations were complemented by surface viscoelasticity studies, using capillary waves to measure the compression moduli and an oscillating disc to measure the shear moduli. Our results show a strong influence of the particle hydrophobicity and surface density on the properties of the layers. Under compression-expansion, the particle layers rearrange quasi-instantaneously, and at high density, they buckle and/or collapse. Shear measurements show a transition from viscous to elastic behavior for particles with contact angles close to 90 degrees. The surface compression moduli are quite small and most likely not related to the stability of the foams made with these particles, in contrast to the case of more common surfactant foams.  相似文献   

3.
Interesting two-dimensional networks with square or hexagonal cavities, and three-dimensional networks with different channels, have been obtained by varying the counterions, the molar ratio of metal to hmt (hmt = hexamethylenetetramine) and the pH values of the initial solutions. Among the eleven products isolated and structurally characterized, two have a metal-to-hmt molar ratio of 2:1 and are the first examples of Ag-hmt square networks, namely [Ag2(mu4-hmt)(NO2)2] (1) and [Ag2(mu4-hmt)(SO4)(H2O)].4H2O (2), two have a metal-to-hmt molar ratio of 1:1 and are 2-D networks with hexagonal cavities, namely [Ag(micro3-hmt)(NO2)] (3) and [Ag2(micro3-hmt)2](S2O6).2H2O (4), and seven present the metal-to-hmt molar ratios of 3:1, 2:1, 3:2, or 4:3 and are 3-D networks of novel topologies and with different channels, namely [Ag2(mu4-hmt)(micro4-ox)] (5), [Ag3(micro4-hmt)2(H2O)2](SO4)(HSO4). 2H2O (6), [Ag2(mu4-hmt)(mu2-O2CMe)](MeCO2).4.5 H2O (7), [Ag2(mu4-hmt)(mu3-maleate)].5H2O (8), [Ag3(mu4-hmt)(mu2-O2CPh)3] (9), [Ag4(mu4-hmt)3(H2O)](SO4)(NO3)2.3H2O (10), and [Ag12(mu4-hmt)6(mu3-HPO4)(mu2-H2PO4)3(H2PO4)7(H2O)](H3PO4).10.5H2O (11).  相似文献   

4.
The reactions of tetrahydrofuran solutions of NBu(4)[AuR(2)] (R = C(6)F(5), C(6)Cl(5)) with TlPF(6) and 4,4'-bipyridine lead to the synthesis of the luminescent materials [Tl(bipy)](2)[Au(C(6)F(5))(2)](2) 1 and [Tl(bipy)][Tl(bipy)(0.5)(thf)][Au(C(6)Cl(5))(2)](2) 2 in high yield. The structures of these complexes, as analyzed by X-ray diffraction, consist of planar polymers formed by repetition of Tl-Au-Au-Tl (1) or Tl-Au-Tl'-Au (2) moieties linked through bidentate bridging bipy ligands. In complex 1 these layers are associated via Tl...F contacts between atoms of adjacent planes, whereas in complex 2 each two polymeric layers are linked through additional bridging bipy molecules. Both complexes are strongly luminescent at room temperature and at 77 K in the solid state, losing this characteristic in solution even at high concentrations. The luminescence is attributed to interactions between metal atoms which are strongly affected by their structural dispositions. DFT calculations are in accord with the observed experimental behavior, showing the nature of the orbitals involved in each transition. Detailed analyses reveal a substantial participation of the metals in the transition giving rise to the emission maxima, and also other more energetic bands in which the ligands are involved and which also give rise to these emissions. The obtained theoretical excitation spectra clearly match the experimental results.  相似文献   

5.
A C60-pyrrolidine derivative with a hydrophobic-hydrophilic-hydrophobic structure (2-{3,4-di{2-[2-(2-decyloxyethoxy)ethoxy]ethoxy}}phenyl-3,4-fulleropyrrolidine, DTPF) has been synthesized and well-characterized. This compound could form stable nanospheres by simply injectingits tetrahydrofuran (THF) solution into water and then removing THF by purging gaseous nitrogen in sequence. Novel nanoassemblies of DTPF nanospheres and gold nanoparticles were obtained through in situ photoreduction of aqueous HAuCl4 in the presence of DTPF nanospheres, which were confirmed by UV-visible, transmission electron microscopy, X-ray powder diffraction, and X-ray photoelectron spectroscopy methods. It is proposed that the interaction between the positively charged nitrogen atom and the gold nanoparticles is the main driving force for the formation of the nanoassemblies.  相似文献   

6.
A novel methodology for constructing molecularly ordered silica nanostructures with two-dimensional (2-D) and three-dimensional (3-D) networks has been developed by using a stepwise process involving silylation of a layered silicate octosilicate with alkoxytrichlorosilanes [ROSiCl(3), R = alkyl] and subsequent reaction within the interlayer spaces. Alkoxytrichlorosilanes react almost completely with octosilicate, bridging two closest Si-OH (or -O(-)) sites on the silicate layers, to form new five-membered rings. The unreacted functional groups, Si-Cl and Si-OR, are readily hydrolyzed by the posttreatment with a water/dimethyl sulfoxide (DMSO) or water/acetone mixture, leading to the formation of two types of silicate structures. The treatment with a water/DMSO mixture produced a unique crystalline 2-D silicate framework with geminal silanol groups, whereas a water/acetone mixture induced hydrolysis and subsequent condensation between adjacent layers to form a new 3-D silicate framework. The 2-D structure is retained by the presence of DMSO molecules within the swelled interlayer spaces and is transformed to a 3-D silicate upon desorption of DMSO. The structural modeling suggests that both of the 3-D silicates contain new cagelike frameworks where solvent molecules are trapped even at high temperature (up to 380 degrees C, in the case of acetone). Both 2-D and 3-D silica structures are quite different from known layered silicates and zeolite-like materials, indicating the potential of the present approach for precise design of various silicate structures at the molecular level.  相似文献   

7.
Periodic arrangement of silica nanospheres assisted by amino acids   总被引:1,自引:0,他引:1  
Uniform-sized silica nanospheres with a well-ordered arrangement were successfully synthesized by a novel and simple method; hydrolysis and condensation reactions of tetraethyl orthosilicate were conducted in the presence of basic amino acids.  相似文献   

8.
Reactions of lanthanide nitrate, oxalate sodium and 2-pyridylmethylphosphonic acid (2-pmpH2) under hydrothermal conditions result in five new lanthanide oxalatophosphonates with two types of structures. Compounds [Ln4(ox)5(2-pmpH)2(H2O)7]·5H2O [Ln3+=Gd (1), Tb (2), Dy (3); ox2−=C2O42−] exhibit a double layer structure, made up of net-like {Ln4(ox)5}n layers containing Ln10(ox)10 rings which are connected by 2-pmpH. While compounds [Ln4(ox)5(2-pmpH)2(H2O)6]·6H2O [Ln3+=Ho (4), Yb (5)] display a three-dimensional framework structure in which the {Ln4(ox)5}n layers are cross-linked by 2-pmpH. The solid state luminescent and magnetic properties are investigated.  相似文献   

9.
We developed a self-assembly process of silica particles to fabricate desired patterns of colloidal crystals having high feature edge acuity and high regularity. A micropattern of colloidal methanol prepared on a self-assembled monolayer in hexane was used as a mold for particle patterning, and slow dissolution of methanol into hexane caused shrinkage of molds to form micropatterns of close-packed SiO2 particle assemblies. This result is a step toward the realization ofnano/micro periodic structures for next-generation photonic devices by a self-assembly process.  相似文献   

10.
11.
Copper-containing mesoporous silica spheres of size in the colloidal range with perfect conservation of pore-ordering, shape and monodispersity and high intra-pore metal dispersion were prepared via a new one-step synthesis and functionalisation route.  相似文献   

12.
The electrophoretic mobility of silica nanospheres was shown to be a function of separation conditions such as pH and phosphate concentration of a carrier electrolyte. The separation selectivity can be controlled by the separation conditions and optimised depending on the sample composition. The effects of pH and phosphate concentration of buffer solutions on the nanosphere electrophoretic mobility are explained using the Overbeek-Booth electrokinetic theory taking into account both electrophoretic retardation and the relaxation effect.  相似文献   

13.
Local structural arrest in random packings of colloidal or granular spheres is quantified by a caging number, defined as the average minimum number of randomly placed spheres on a single sphere that immobilize all its translations. We present an analytic solution for the caging number for two-dimensional hard disks immobilized by neighbor disks which are placed at random positions under the constraint of a nonoverlap condition. Immobilization of a disk with radius r = 1 by arbitrary larger neighbor disks with radius r > or = 1 is solved analytically, whereas for contacting neighbors with radius 0 < r < 1, the caging number can be evaluated accurately with an approximate excluded volume model that also applies to spheres in higher Euclidean dimension. Comparison of our exact two-dimensional caging number with studies on random disk packing indicates that it relates to the average coordination number of random loose packing, whereas the parking number is more indicative for coordination in random dense packing of disks.  相似文献   

14.
Raspberry-like silica nanospheres were prepared by electrostatic self-assembly of polyelectrolytes and monodisperse silica nanoparticles of two different sizes, and their coatings were fabricated via layer-by-layer assembly with polyelectrolytes and following calcination. The morphology of the raspberry-like silica nanospheres and their coatings were observed by scanning and transmission electron microscopies. The surface properties of these coatings were investigated by measuring their water contact angles, and the results showed that such hierarchically structured coatings had unique superhydrophilic and antifogging properties. Finally, the formation mechanism and the property-structure relationship were discussed in details.  相似文献   

15.
Jiang JJ  Zheng SR  Liu Y  Pan M  Wang W  Su CY 《Inorganic chemistry》2008,47(22):10692-10699
The synergistic interplay of coordination and hydrogen-bonding interactions leads to assembly of isomorphous compounds of the general formula [Ln(ntb) 2](ClO 4) 3.(BDA4BPy) 3.2MeCN} infinity (Ln = La, Sm and Pr, ntb = tris(2-benzimidazoylmethyl)amine, and BDA4BPy = N (1), N (4)-bis(pyridin-4-ylmethylene)-benzene-1,4-diamine), of which polymorphic crystals can be isolated in a different solvent system. In acetonitrile (MeCN) solution, the compounds crystallize as a red color (Ln = La, meso -1, Ln = Pr, meso -2), while in an acetonitrile-benzonitrile (MeCN-PhCN) mixture, yellow crystals are obtained (Ln = Pr, helical - 2). The single-crystal X-ray diffraction analyses of these crystals reveal that the structures display similar cylindrical arrays containing polycompartmental cavities for guest inclusion. Occurrence of polymorphism is due to formation of helical and meso-helical arrays, giving rise to a way to tune the helicity through the solvent effects on the helix propensity of the bis-tripodal coordination converters.  相似文献   

16.
The surface properties of silica particles significantly influence their efficiency in particle-assisted wetting. A series of small particles of controlled surface hydrophobicity was mixed with a nonvolatile oil. These mixtures were applied onto a water surface; the structures formed were subsequently solidified by photopolymerization and observed using scanning electron microscopy. For the most hydrophilic particles, only lenses of pure oil formed, with the particles being submerged into the aqueous phase. The most hydrophobic particles help to form patches of stable homogeneous mixed layers composed of oil and particles. In these cases the particles adhere to the air-oil as well as to the oil-water interfaces. For particles with intermediate hydrophobicity, lenses and patches of mixed layers were observed. These three different observations verify that the hydrophobicity of the particle surface determines the wetting behavior of the oil at the water surface.  相似文献   

17.
Assemblies of colloidal particles are frequently used in novel applications, and this requires nondestructive methods allowing overall characterization of the sample and collection of information about the quality of the arrays. From suspensions of polystyrene, poly[styrene-co-(2-hydroxyethylmethacrylate)], poly[styrene-co-acrylic acid], and poly[styrene-co-methacrylic acid], assemblies of spherical particles were obtained by elimination of the solvent in different ways-evaporation, gravity deposition, and filtration. These latex particle packings were characterized by scanning and transmission electron microscopy and by gas adsorption to determine the efficiency of packing. The surface area, total pore volume, and pore size distributions obtained from the adsorption and desorption data were related to characteristic parameters calculated for cubic close-packed spherical particles.  相似文献   

18.
Long fibers assembled from peptide amphiphiles capable of binding the metalloporphyrin zinc protoporphyrin IX ((PPIX)Zn) have been synthesized. Rational peptide design was employed to generate a peptide, c16-AHL(3)K(3)-CO(2)H, capable of forming a β-sheet structure that propagates into larger fibrous structures. A porphyrin-binding site, a single histidine, was engineered into the peptide sequence in order to bind (PPIX)Zn to provide photophysical functionality. The resulting system indicates control from the molecular level to the macromolecular level with a high order of porphyrin organization. UV/visible and circular dichroism spectroscopies were employed to detail molecular organization, whereas electron microscopy and atomic force microscopy aided in macromolecular characterization. Preliminary picosecond transient absorption data are also reported. Reduced hemin, (PPIX)Fe(II), was also employed to highlight the material's versatility and tunability.  相似文献   

19.
The paper reports a novel approach to achieve self-healing surface hydrophobicity. Mesoporous silica is used as the reservoir for hydrophobic molecules, i.e., octadecylamine (ODA), that can release and refresh the surface hydrophobicity consecutively. A polymdopamine layer is used to further encapsulate silica-ODA, providing a reactive layer, governing release of the underlying ODA, and improving the dispersivity of silica nanoparticles in bulk resin. The approach arrives at self-healing (super)hydrophobicity without using any fluoro-containing compounds.  相似文献   

20.
A green and inexpensive alternative to existing methods for the preparation of magnetic iron oxide/silica nanocomposite particles has been investigated. The use of water-in oil emulsions based on vegetable oils instead of usual solvents led to microsized or nanosized magnetic silica spheres exhibiting similar characteristics to those of classical procedures. Furthermore this approach is very general since a large class of porous magnetic colloids differing in size or iron oxide fraction has been obtained. This work emphasizes the importance of the level of the shearing during the emulsification step with regard to the size and monodispersity of the prepared beads. All the materials prepared were fully characterized (SEM and TEM microscopies, SQUID magnetometry, N(2) sorption volumetry, etc.). In addition, samples functionalized by thiol groups have been synthesized and successfully tested for the removal of heavy metals in water-treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号