首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.

Background

Soluble guanylyl cyclase (sGC) is the main receptor for nitric oxide (NO) when the latter is produced at low concentrations. This enzyme exists mainly as a heterodimer consisting of one α and one β subunit and converts GTP to the second intracellular messenger cGMP. In turn, cGMP plays a key role in regulating several physiological processes in the nervous system. The aim of the present study was to explore the effects of a NO donor on sGC activity and its protein and subunit mRNA levels in a neural cell model.

Results

Continuous exposure of bovine adrenal chromaffin cells in culture to the nitric oxide donor, diethylenetriamine NONOate (DETA/NO), resulted in a lower capacity of the cells to synthesize cGMP in response to a subsequent NO stimulus. This effect was not prevented by an increase of intracellular reduced glutathione level. DETA/NO treatment decreased sGC subunit mRNA and β1 subunit protein levels. Both sGC activity and β1 subunit levels decreased more rapidly in chromaffin cells exposed to NO than in cells exposed to the protein synthesis inhibitor, cycloheximide, suggesting that NO decreases β1 subunit stability. The presence of cGMP-dependent protein kinase (PKG) inhibitors effectively prevented the DETA/NO-induced down regulation of sGC subunit mRNA and partially inhibited the reduction in β1 subunits.

Conclusions

These results suggest that activation of PKG mediates the drop in sGC subunit mRNA levels, and that NO down-regulates sGC activity by decreasing subunit mRNA levels through a cGMP-dependent mechanism, and by reducing β1 subunit stability.  相似文献   

2.
Cyclic nucleotide, such as cyclic GMP, is a secondary messenger that regulates a wide range of biological process via the diverse signaling cascades. Photoactivated adenylyl cyclases (PACs), constituted of blue light utilizing flavin (BLUF) and cyclase homology domain (CHD), are used as an optogenetic tool to modulate the cyclic AMP (cAMP) level and to study cAMP-mediated signal transduction mechanisms. Here, we have engineered photoactivated adenylyl cyclases (PACs) from microbes to photoactivated guanylyl cyclases (PGCs) via mutagenesis of the substrate binding-specific residues in cyclase homology domain. We demonstrate purification, photodynamic, and detailed biochemical characterization of the engineered PGCs that can serve as optogenetic tool for manipulation of cGMP level in the cells. Engineered PGCs show typical BLUF photoreceptor properties with different recovery kinetics and varying light-regulated guanylyl cyclase activities.  相似文献   

3.
A simple, sensitive and rapid technique is described, permitting separation of cGMP from GMP, GDP and GTP by the use of unidirectional high-voltage paper electrophoresis. The recovery of labeled cGMP in the assay of guanyl cyclase, by this procedure is 85-90%; the blank values (no enzyme) are negligible.  相似文献   

4.
Recently, intravascular low-power red laser light (LPRLL) therapy has been proposed for the prevention of postangioplasty restenosis due to the observed inhibition of experimental neointimal formation. The objective of this study was to determine the impact of endoluminal LPRLL on vascular levels of inducible nitric oxide synthase (iNOS) and cyclic guanosine monophosphate (cGMP) to help define the mechanism of this effect. Eight atherosclerotic male adult New Zealand White rabbits weighing 4-6 kg were used in these studies. The iliac arteries were treated in separate zones with: (1) balloon inflation only; (2) laser illumination only; and (3) balloon inflation + laser illumination. An uninjured zone of the iliac artery served as a control. Laser irradiation (630 nm) was delivered to the vessel wall via a Cold laser Illuminator (Cook, Inc., Bloomington, IN), with a 3 mm-diameter balloon. Experiments demonstrated that vascular cGMP levels obtained immediately following treatment in the balloon only group was the lowest (0.29 +/- 0.05 pmol/mg protein) and significantly lower compared with the uninjured controls (1.01 +/- 0.07 pmol/ mg protein) (P < 0.001). In the laser only treated group cGMP levels were significantly increased (2.87 +/- 0.12 pmol/mg protein) compared with the uninjured control (P < 0.001) and the balloon only group (P < 0.001). Vascular cGMP levels in the balloon + laser group (2.09 +/0.07 pmol/mg protein) was also increased compared to the balloon only (P < 0.001) and control (P < 0.001) groups. Qualitative analysis of Western blot demonstrated that laser illumination induces iNOS. In contrast balloon dilatation did not induce iNOS. Balloon + laser treatment, however, tended to restore the expression of iNOS. Our study demonstrated that intravascular low dose laser irradiation induces iNOS and elevates vascular cGMP in an in vivo atherosclerotic rabbit model.  相似文献   

5.
Abstract— Intact disks and inverted disks were prepared from bovine retinal rods and the distribution in the disk membrane of such enzymes as guanyl cyclase, cyclic nucleotide phosphodiesterase, GTP binding protein (GTPase), 5'-nucleotidase and rhodopsin kinase was investigated. Guanyl cyclase was not detected in the disk; the enzyme activity was high in a membranous fraction containing the cilium or axoneme and the rod outer segment plasma membrane. Cyclic nucleotide phosphodiesterase, GTP binding protein (GTPase) and rhodopsin kinase were associated on the external surface of disk in the presence of 2 m M Mg2+. The enzymes dissociated from the membrane when Mg2+ was depleted. Thus, magnesium ion seems to regulate the state of these enzymes in the outer segment. 5'-Nucleotidase activity was low in intact disks but was significantly enhanced after inversion of the disk. The catalytic site of the enzyme, therefore, must be located on the internal (intradiscal) surface. Since the disks are known to be formed by invagination of the plasma membrane, 5'-nucleotidase, by inference, would have its catalytic site exposed on the external surface of the plasma membrane. Preliminary experiments showed that the capability of light-activated rhodopsin to activate cyclic nucleotide phosphodiesterase was inhibited by phosphorylation of the pigment. This supports the idea that rhodopsin kinase, cyclic nucleotide phosphodiesterase and GTPase exist as a functional complex on rod membranes.  相似文献   

6.
A blue light-inducible phosphodiesterase (PDE) activity, specific for the hydrolysis of cyclic di-GMP (c-di-GMP), has been identified in a recombinant protein from Synechococcus elongatus. Blue light (BL) activation is accomplished by a light, oxygen, voltage (LOV) domain, found in plant phototropins and bacterial BL photoreceptors. The genome of S. elongatus contains two genes coding for proteins with LOV domains fused to EAL domains (SL1 and SL2). In both cases, a GGDEF motif is placed in between the LOV and the EAL motifs. Such arrangement is frequently found with diguanylate-cyclase (DGC) functions that form c-di-GMP. Cyclic di-GMP acts as a second messenger molecule regulating biofilm formation in many microbial species. Both enzyme activities modulate the intracellular level of this second messenger, although in most proteins only one of the two enzyme functions is active. Both S. elongatus LOV-GGDEF-EAL proteins were expressed in full length or as truncated proteins. Only the SL2 protein, expressed as a LOV-GGDEF-EAL construct, showed an increase of PDE activity upon BL irradiation, demonstrating this activity for the first time in a LOV-domain protein. Addition of GTP or c-di-GMP did not affect the observed enzymatic activity. In none of the full-length or truncated proteins was a DGC activity detected.  相似文献   

7.
Photophysiological and pharmacological approaches were used to examine light-induced germination of resting spores in the red-tide diatom Leptocylindrus danicus. The equal-quantum action spectrum for photogermination had peaks at about 440 nm (blue light) and 680 nm (red light), which matched the absorption spectrum of the resting spore chloroplast, as well as photosynthetic action spectra reported for other diatoms. DCMU, an inhibitor of photosynthetic electron flow near photosystem II, completely blocked photogermination. These results suggest that the photosynthetic system is involved in the photoreception process of light-induced germination. Results of pharmacological studies of the downstream signal transduction pathway suggested that Ca(2+) influx is the closest downstream neighbor, followed by steps involving calmodulin, nitric oxide synthase, guanylyl cyclase, protein-tyrosine-phosphatase, protein kinase C and actin polymerization and translation.  相似文献   

8.
The perception of pain caused by inflammation serves as a warning sign to avoid further injury. The generation and transmission of pain impulses involves various pathways and receptors. Cardamonin isolated from Boesenbergia rotunda (L.) Mansf. has been reported to exert antinociceptive effects in thermal and mechanical pain models; however, the precise mechanism has yet to be examined. The present study investigated the possible mechanisms involved in the antinociceptive activity of cardamonin on protein kinase C, N-methyl-d-aspartate (NMDA) and non-NMDA glutamate receptors, l-arginine/cyclic guanosine monophosphate (cGMP) mechanism, as well as the ATP-sensitive potassium (K+) channel. Cardamonin was administered to the animals intra-peritoneally. Present findings showed that cardamonin significantly inhibited pain elicited by intraplantar injection of phorbol 12-myristate 13-acetate (PMA, a protein kinase C activator) with calculated mean ED50 of 2.0 mg/kg (0.9–4.5 mg/kg). The study presented that pre-treatment with MK-801 (NMDA receptor antagonist) and NBQX (non-NMDA receptor antagonist) significantly modulates the antinociceptive activity of cardamonin at 3 mg/kg when tested with glutamate-induced paw licking test. Pre-treatment with l-arginine (a nitric oxide precursor), ODQ (selective inhibitor of soluble guanylyl cyclase) and glibenclamide (ATP-sensitive K+ channel inhibitor) significantly enhanced the antinociception produced by cardamonin. In conclusion, the present findings showed that the antinociceptive activity of cardamonin might involve the modulation of PKC activity, NMDA and non-NMDA glutamate receptors, l-arginine/nitric oxide/cGMP pathway and ATP-sensitive K+ channel.  相似文献   

9.
We report that exo- and endogenous guanosine 3',5'-cyclic monophosphate (cGMP) specifically influenced the photophobic response. In behavioral experiments the slowly hydrolyzable and membrane-permeable analogs of cGMP (8-bromo-cGMP [Br-cGMP] and N6,2'-o-dibutyryl-cGMP) dramatically prolonged the time for ciliary stop response and decreased the duration of ciliary reversal in a dose-dependent manner. When analogs of adenosine 3',5'-cyclic monophosphate (cAMP) (8-bromo-cAMP or N6,2'-o-dibutyryl-cAMP) were used, no essential effects were detected on the kinetics of the photophobic response. Both nonspecific cyclic nucleotide phosphodiesterase (PDE) activity inhibitors (3-isobutyl-1-methylxanthine [IBMX] and 1,3-dimethylxanthine [theophylline]) and the highly specific cGMP-PDE activity inhibitor 1,4-dihydro-5-[2-propoxyphenyl]-7H-1,2,3-triazolo[4,5-d]pyrimidine-7-one (zaprinast) mimicked the effects of cGMP analogs. Treatment of cells with an inhibitor of guanylate cyclase activity (6-anilino-5,8-quinolinedione [LY 83583]) exerted an effect opposite to that of cGMP analogs and PDE activity inhibitors. The positive physiological effect of LY 83583 was significantly diminished in ciliates that were treated simultaneously with Br-cGMP. In an assay of cell cyclic nucleotide content, the exposure of dark-adapted Stentor to light evoked a transient decrease in the basal level of intracellular cGMP. Alterations in internal cGMP levels were more distinct when the intensity of applied illumination was increased. In the presence of IBMX or theophylline the basal content of cGMP was markedly enhanced, and the photoinduced changes in cGMP level were less pronounced. In this paper the possible whole molecular mechanism by which the ciliary orientation in Stentor is controlled by light is presented.  相似文献   

10.
Abstract— At 5 days after sowing of pea seeds in darkness, intact seedlings were either irradiated with red light for 40 s at 50 μmol/m2/s at the third internode or with red light as above and then with far-red light for 180 s at 0.4 μmol/m2/s, and the stems were sectioned from below the hook (mainly the third internodes) and placed in liquid N2 in a mortar. The samples were well ground, and after the addition of extraction buffer, homogenates were centrifuged to prepare the crude membrane and soluble fractions. Red-light irradiation increased the phosphorylation of an 18 kDa protein, while far-red-light irradiation decreased it. The 18 kDa protein (formerly 15 kDa protein) was identified as nucleoside diphosphate kinase (EC 2.4.6) (NDP kinase) by western blotting using an NDP kinase-specific antibody. The membrane and the soluble fractions of the red-light-irradiated samples were separated by native polyacrylamide gel electrophoresis. The protein complexes prepared from the membrane and soluble fractions differed in their mobilities, as determined by two-dimensional electrophoresis and nonequilibrium pH gradient electrophoresis. The major protein spots from both samples were cut out from the gel and tested for NDP kinase and protein kinase activity. Both protein preparations showed NDP kinase activity and changes from nucleoside diphosphates and deoxynucleoside diphosphates to nucleoside triphosphates and deoxynucleoside triphosphates in the presence of [γ-32P]ATP. Both preparations showed protein kinase phosphorylation of myelin basic protein (MBP) rather than histone H1 as protein substrates, suggesting that NDP kinase possesses a function similar to that of MAP kinase.  相似文献   

11.
Cyanobacteriochromes (CBCRs) are photoreceptors that bind to a linear tetrapyrrole within a conserved cGMP‐phosphodiesterase/adenylate cyclase/FhlA (GAF) domain and exhibit reversible photoconversion. Red/green‐type CBCR GAF domains that photoconvert between red‐ (Pr) and green‐absorbing (Pg) forms occur widely in various cyanobacteria. A putative phototaxis regulator, AnPixJ, contains multiple red/green‐type CBCR GAF domains. We previously reported that AnPixJ's second domain (AnPixJg2) but not its fourth domain (AnPixJg4) shows red/green reversible photoconversion. Herein, we found that AnPixJg4 showed Pr‐to‐Pg photoconversion and rapid Pg‐to‐Pr dark reversion, whereas AnPixJg2 showed a barely detectable dark reversion. Site‐directed mutagenesis revealed the involvement of six residues in Pg stability. Replacement at the Leu294/Ile660 positions of AnPixJg2/AnPixJg4 showed the highest influence on dark reversion kinetics. AnPixJg2_DR6, wherein the six residues of AnPixJg2 were entirely replaced with those of AnPixJg4, showed a 300‐fold faster dark reversion than that of the wild type. We constructed chimeric proteins by fusing the GAF domains with adenylate cyclase catalytic regions, such as AnPixJg2‐AC, AnPixJg4‐AC and AnPixJg2_DR6‐AC. We detected successful enzymatic activation under red light for both AnPixJg2‐AC and AnPixJg2_DR6‐AC, and repression under green light for AnPixJg2‐AC and under dark incubation for AnPixJg2_DR6‐AC. These results provide platforms to develop cAMP synthetic optogenetic tools.  相似文献   

12.
In the present study, one‐step purification of angiotensin‐converting enzyme (ACE, peptidyldipeptidase A, EC 3.4.15.1), responsible for regulation of blood pressure, was achieved using affinity chromatography from human plasma. The enzyme was purified 12,860‐fold with a specific activtiy of 5080 EU/mg protein. Optimum temperature and pH were determined for the enzyme as 35–40°C and pH 7.4–7.5, respectively. The purity of ACE was determined by SDS–PAGE and the enzyme showed two bands at 60 and 70 kDa on the gel. The native molecular weight of ACE was found to be 260 kDa by gel filtration chromatography, demonstrating that the enzyme has a heterodimeric structure. Natural fatty acids of Nigella sativa (Ranunculaceae) were isolated by means of column chromatography. The structures of these compounds were determined using NMR and GC‐MS. The results showed that high concentrations of linoleic, oleic and palmitic acids were isolated from the plant. The effect of six fractions (Fr 1–6) on ACE activity was examined. Fraction 3 increased the ACE activity while the other fractions decreased the enzyme activity. The concentrations of the fractions inhibiting the half‐maximum activity of the enzyme were calculated as 1.597 mg/mL for Fr 1, 0.053 mg/mL for Fr 2, 0.527 mg/mL for Fr 4, 0.044 mg/mL for Fr 5 and 0.136 mg/mL for Fr 6 using a Lineweaver–Burk graph.  相似文献   

13.
Choleragen exerts its effect on cells through activation of adenylate cyclase. Choleragen initially interacts with cells through binding of the B subunit of the toxin to the ganglioside GM1 on the cell surface. Subsequent events are less clear. Patching or capping of toxin on the cell surface may be an obligatory step in choleragen action. Studies in cell-free systems have demonstrated that activation of adenylate cyclase by choleragen requires NAD. In addition to NAD, requirements have been observed for ATP, GTP, and calcium-dependent regulatory protein. GTP also is required for the expression of choleragen-activated adenylate cyclase. In preparations from turkey erythrocytes, choleragen appears to inhibit an isoproterenol-stimulated GTPase. It has been postulated that by decreasing the activity of a specific GTPase, choleragen would stabilize a GTP-adenylate cyclase complex and maintain the cyclase in an activated state. Although the holotoxin is most effective in intact cells, with the A subunit having 1/20th of its activity and the B subunit (choleragenoid) being inactive, in cell-free systems the A subunit, specifically the A1 fragment, is required for adenylate cyclase activation. The B protomer is inactive. Choleragen, the A subunit, or A1 fragment under suitable conditions hydrolyzes NAD to ADP-ribose and nicotinamide (NAD glycohydrolase activity) and catalyzes the transfer of the ADP-ribose moiety of NAD to the guandino group of arginine (ADP-ribosyltransferase activity). The NAD glycohydrolase activity is similar to that exhibited by other NAD-dependent bacterial toxins (diphtheria toxin, Pseudomonas exotoxin A), which act by catalyzing the ADP-ribosylation of a specific acceptor protein. If the ADP-ribosylation of arginine is a model for the reaction catalyzed by choleragen in vivo, then arginine is presumably an analog of the amino acid which is ADP-ribosylated in the acceptor protein. It is postulated that choleragen exerts its effects on cells through the NAD-dependent ADP-ribosylation of an arginine or similar amino acid in either the cyclase itself or a regulatory protein of the cyclase system.  相似文献   

14.
Abstract— During prolonged continuous irradiation with red light the specific activity of uridine 5'-diphosphoglucose (UDPG) pyrophosphorylase (uridine 5'-triphosphate: glucose 1-phosphate uridylyl-transferase EC 2.7.7.9) decreased in Acetabularia mediterranea Lamouroux (=A. acetabulum (L.) Silva). Subsequent blue light restored the original activity within a comparatively short period of 3 to 4 days. Computer-aided quantitative evaluation of density labelling experiments showed that the synthesis of the enzyme was accelerated about four-fold during the period of activation by blue light. A similar increase in the rate of synthesis was found for hydroxypyruvate reductase (EC 1.1.1.81), a control enzyme that showed no blue light-dependent changes in the specific activity under these conditions. The increase in the rate of enzyme synthesis was caused by an overall stimulation of the cytosolic translation. Degradation of UDPG pyrophosphorylase was unaffected by blue light, while the half life of hydroxypyruvate reductase was shortened about two-fold compared to continuous red light. Thus, degradation of proteins appears to be selectively light dependent in Acetabularia.
Model calculations for enzyme amount and enzyme synthesis were carried out using the measurements of enzyme activity, rates of cytosolic protein synthesis, and degradation constants of the enzymes. Assuming that activities represented amounts of the given enzymes, these calculations indicated a selective activation of UDPG pyrophosphorylase synthesis by blue light since it did not coincide with the overall stimulation of protein synthesis in the cytosol, in contrast to hydroxypyruvate reductase.  相似文献   

15.
Xenopus laevis melanophores express two melanopsins, Opn4x and Opn4m. We identified Opn4x immunoreactivity throughout the melanophore cytoplasm and in the cell membrane. The strongest immunopositivity for Opn4m was observed in the nuclear region, and no labeling was seen in the cell membrane. This immunodistribution suggests Opn4x as the functional photopigment. In X. laevis melanophores, light triggers pigment dispersion and clock gene induction at blue wavelength, which maximally activates melanopsins. Although light stimulation activates phospholipase C and increases intracellular calcium and cGMP, this nucleotide does not participate in photo‐induced melanin dispersion. Nevertheless, the guanylyl cyclase activator YC‐1 stimulates Per1 expression, similar to blue light pulse, and the use of pharmacological inhibitors indicates the participation of the phosphoinositide cascade. Since cAMP levels does not change after blue light stimulation, the cAMP/PKA pathway most probably is not involved in blue light induction of Per in X. laevis melanophores. Given the localization of melanopsins and our pharmacological data, the light‐induced clock gene expression seems to be mediated by Opn4x through phosphoinositide cascade and rise in cGMP, thus leading to the reset of the biological clock in our model.  相似文献   

16.
Chemical crosslinking in combination with mass spectrometry has matured into an alternative approach to derive low-resolution structural information of proteins and protein complexes. Yet, one of the major drawbacks of this strategy remains the lack of software that is able to handle the large MS datasets that are created after chemical crosslinking and enzymatic digestion of the crosslinking reaction mixtures. Here, we describe a software, termed StavroX, which has been specifically designed for analyzing highly complex crosslinking datasets. The StavroX software was evaluated for three diverse biological systems: (1) the complex between calmodulin and a peptide derived from Munc13, (2) an N-terminal ß-laminin fragment, and (3) the complex between guanylyl cyclase activating protein-2 and a peptide derived from retinal guanylyl cyclase. We show that the StavroX software is advantageous for analyzing crosslinked products due to its easy-to-use graphical user interface and the highly automated analysis of mass spectrometry (MS) and tandem mass spectrometry (MS/MS) data resulting in short times for analysis. StavroX is expected to give a further push to the chemical crosslinking approach as a routine technique for protein interaction studies.  相似文献   

17.
The purpose of this study was to identify the effect of sildenafil citrate on IL-1β-induced nitric oxide (NO) synthesis and iNOS expression in human synovial sarcoma SW982 cells. IL-1β stimulated the cells to generate NO in both dose- and time-dependent manners. The IL-1β-induced NO synthesis was inhibited by guanylate cyclase (GC) inhibitor, LY83583. When the cells were treated with 8-bromo-cGMP, a hydrolyzable analog of cGMP, NO synthesis was increased upto 5-fold without IL-1β treatment suggesting that cGMP is an essential component for increasing the NO synthesis. Synoviocytes and chondrocytes contain strong cGMP phosphodiesterase (PDE) activity, which has biochemical features of PDE5. When SW982 cells were pretreated with sildenafil citrate (Viagra), a PDE5 specific inhibitor, sildenafil citrate significantly inhibited IL-1β-induced NO synthesis and iNOS expressions. From this result, we noticed that PDE5 activity is required for IL-1β-induced NO synthesis and iNOS expressions in human synovial sarcoma cells, and sildenafil citrate may be able to suppress an inflammatory reaction of synovium through inhibition of NO synthesis and iNOS expression by cytokines.  相似文献   

18.
Summary A method for determination of the composition of the light oil fractions in high-temperature coal tar by means of distillation, followed by gas chromatography on a crosslinked fused-silica, capillary column coated with optimum amount of stationary phase and identification by capillary gas chromatography/Fourier transform infrared spectrometry combined with GC retention indices (GC/FTIR-RI) is described. This method was effectively used to identify complex mixture such as coal tar without any standard samples, especially, adapted for isomeric compounds. More than 60 and 50 compounds were also separated and identified respectively in light oil fractions. This shows the capability of the capillary GC/FTIR combined with GC retention indices to identify isomers not accomplished by GC/MS.  相似文献   

19.
In the filamentous, nitrogen-fixing cyanobacterium Anabaena sp. PCC7120, red light (630 nm) decreased, whereas far-red light (720 nm) increased cellular adenosine 3',5'-cyclic monophosphate (cAMP) content. To find a red and far-red light photoreceptor that triggers the cAMP signal cascade, we disrupted 10 open reading frame having putative chromophore-binding GAF domains. The response of the cellular cAMP concentration to red and far-red light in each open reading frame disruptant was determined. It was found that only the mutant of the gene all2699 failed to respond to far-red light. The open reading frame named as aphC encoded a protein with 920 amino acids including GAF domains similar to those involved in Cph2, a photoreceptor of Synechocystis sp. PCC6803. To determine which adenylate cyclase (AC) is responsible for far-red light signal, we disrupted all AC genes and found that CyaC was the candidate. The enzymatic activity of CyaC might be controlled by a far-red light photoreceptor through the phosphotransfer reaction. The site-specific mutant of the Asp59 residue of the receiver (R1) domain of CyaC lost its light-response capability. It was suggested that the far-red light signal was received by AphC and then transferred to the N-terminal response regulator domain of CyaC. Then its catalytic activity was stimulated, which increased the cellular cAMP concentration and drove the subsequent signal transduction cascade.  相似文献   

20.
Abstract— During the purification of light activated GTPase, we have observed that the GTPase activity is suddenly lost because of the separation of two components which are both needed for enzymatic activity. The G fraction or protein (apparent mol. wt 55000) can selectively bind GTP and is necessary for PDE activation by illuminated rhodopsin. However, the G fraction shows no GTPase activity unless it is supplemented by illuminated rhodopsin and the H fraction, a heat labile, trypsin resistant macro-molecule with an apparent mol. wt of 53 000. The G and H fractions (and GTPase activity) show a significant increase in binding to bleached as compared with unbleached disc membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号