首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mössbauer spectroscopy was applied to natural chromite samples from ophiolite complexes in the Philippines. Chemical and structural characterization of the chromite samples was also carried out using X-ray absorption fine structure (XAFS), X-ray diffraction (XRD) and X-ray fluorescence spectrometry (XRF). The Mössbauer spectra of the samples consisted of quadrupole doublets ascribable to Fe3+ in octahedral site, Fe3+ in tetrahedral site, and Fe2+ in tetrahedral site. The relative percentage of Fe3+ and Fe2+ ions suggested that these Philippine samples were formed under relatively high oxygen fugacity.  相似文献   

2.
Nanosize nickel-substituted cobalt ferrites were prepared using aerosol route and characterized by TEM, XRD, magnetic and Mössbauer spectroscopy. The particle size of as obtained samples was found to be ∼10 nm which increases upto ∼80 nm on annealing at 1200 °C. The unit cell parameter ‘a’ decreases linearly with the nickel concentration due to smaller ionic radius of nickel. The saturation magnetization for all the samples after annealing at 1200 °C lies in the range 47.6-84.5 emu/g. Room temperature Mössbauer spectra of as obtained samples exhibit a broad doublet, suggesting super paramagnetic nature of the sample. The broad doublet is further resolved into two doublets corresponding to the iron atoms residing at the surface and internal regions of the particle. The samples annealed at 1200 °C showed broad sextet, which is resolved into two sextets, corresponding to tetrahedrally and octahedrally coordinated Fe cations. Cation distribution calculated using XRD and Mössbauer data indicates a decrease in Fe3+(oct.)/Fe3+(tet.) ratio with increasing nickel concentration.  相似文献   

3.
The iron bearing phases present in a ferromanganese nodule from the Central Indian Ocean have been determined using57Fe Mössbauer spectroscopy. The Mössbauer results have been corroborated by XRD, IR and TG-DTA studies. The Mössbauer spectrum of a ferromanganese nodule shows a broad line width which indicates the presence of more than one iron bearing paramagnetic oxide or oxyhydroxide phases where iron is present as Fe3+. -FeOOH has been distinctly characterised as one of the iron bearing phases in the nodule. Other oxyhydroxide and oxide phases of iron in the nodule have been ruled out. A typical paramagnetic doublet persists even at very high temperature which has been proposed to be due to iron(III)phosphate. Formation of solid solution of Mn2O3–Fe2O3 has been observed in the heat treated nodule at 1073 K, which has been characterised by the Mössbauer technique.  相似文献   

4.
In-beam Mössbauer spectra of 57Fe, decayed from short-lived 57Mn (T1/2 = 1.45 min) implanted into potassium permanganate, KMnO4, were measured at temperatures between 11 K and 130 K. This is the first application of a secondary RI beam to the study of valence states after nuclear transformation. The in-beam Mössbauer spectra obtained below 90 K could be analyzed with two components, a doublet and a singlet. From the calculations of the molecular orbital wave functions, the singlet is suggested to be substitutional 57Fe atoms for Mn-sites in tetrahedral [MnO4] with an unusually high valence state of Fe8+.  相似文献   

5.
Introduction of the Mössbauer nuclei 57Fe into Hg-1223 phase and that of 57Fe and 151Eu into Tl-1212 and Tl-1223 superconductors were investigated. Samples of high phase purity were obtained. Scanning electron microscopy and optical microscopy in normal and polarized light were employed to study the microstructure of the specimens. Energy dispersive X-ray analysis showed that 57Fe in the Hg-based samples and 57Fe as well as 151Eu in the Tl-based compounds, entered superconducting phases. Incorporation of Eu3+ into the superconducting phase favored the formation of the Tl-1212 phase. Mössbauer spectroscopy showed that Eu3+ entered the Ca-site. Two doublets found in the 57Fe Mössbauer spectra in both the Hg-1223 and the Tl-1223 phase referred to two different micro-environments of Fe3+. The assignment of the 57Fe Mössbauer spectra was made under the assumption that Fe favored the 1223 phase. Fe3+ may replace Cu in both the square pyramidal, five-fold oxygen coordinated Cu sites between the Ca and Ba-(Sr)-O layers, and in the square planar, four-fold oxygen coordinated Cu sites the Ca layers in the superconducting phases in both the Hg- and the Tl-based materials. From the relative areas of the two doublets, we concluded that the Fe3+ preferred the square planar Cu site.  相似文献   

6.
Silica supported Rh–Fe catalysts were characterized by means of in situ57Fe Mössbauer spectroscopy. The Mössbauer spectra indicated that iron on the silica support existed either as Fe/O/ in the Rh–Fe alloy or as Fe3+ in Rh–Fe metal cluster compounds. The (Fe3+/Fe/O/) ratio and Mössbauer parameters were found to depend on the (Fe/Rh) atomic ratio in the catalysts. Such dependence corresponded to the change of catalytic properties of the supported Rh–Fe catalyst with the varying (Fe/Rh) ratio.  相似文献   

7.
Cation distribution have been investigated using X-ray diffraction, magnetic and Mössbauer spectral studies in chromium-substituted nickel ferrites prepared by aerosol route. Cation distribution indicates that the chromium atom occupy octahedral site upto x=0.8, and then also enters into tetrahedral site. The saturation magnetization decreases linearly with the increase of chromium concentration due to the diamagnetic nature of the Cr3+. However, interesting behaviour is observed in the coercivity. Initially it increases slowly with the chromium concentration but when x>0.8 a very large increase has been observed. This was attributed to the specific cation distribution of Cr3+ which results an unquenched orbital angular momentum and a large anisotropy. Room temperature Mössbauer spectra of as obtained samples exhibited a broad doublet resolved into two doublets corresponding to the surface and internal region atoms. The samples annealed at 1200 °C show broad sextets, which were fitted with different sextets, indicating different local environment of both tetrahedral and octahedral coordinated iron cation.  相似文献   

8.
Two representative titaniferous magnetite samples procured from Moulabhanj, Orissa, India have been studied by PIXE, EDXRF, Mössbauer spectroscopy, and XRD techniques. Major iron-bearing phases identified in the samples by Mössbauer spectroscopy and XRD are magnetite, hematite, ferrous ilmenite and ferric ilmenite. The Fe2+/Fe3+ ratio and the relative percentages of different minerals were determined from the resonance areas of Mössbauer spectra. Quantitative multielemental analysis was carried out by energy dispersive X-ray fluorescence (EDXRF) and proton induced X-ray emission (PIXE). Nineteen minor and trace elements have been quantified by EDXRF whereas by PIXE eighteen elements have been analyzed quantitatively. Concentrations of trace elements determined by EDXRF and PIXE were used in interpreting the physico-chemical condition of the depositional basin.  相似文献   

9.
Traditional black pottery produced in Nádudvar, E-Hungary, was studied by 57Fe Mössbauer spectroscopy, X-ray diffractometry and microscopy. Quartz, feldspar, clay minerals (kaolinite, smeetite, illite) and calcite were identified in the basic clay material by X-ray diffractometry (XRD). Mössbauer spectroscopy (MS) of the original clay revealed that about 35% of iron compounds were present in goethite while the rest in clay minerals (illite and smectite). After firing the clay in air using an electric furnace (red pottery is prepared in the same way), the Mössbauer spectra showed hematite as the only iron oxide or hydroxide phase, being in good agreement with X-ray diffractometry. In the black product itself, fired in the traditional open-flame furnace, the Mössbauer spectra reflected the presence of iron in magnetite and in sheet silicates with approximately the same relative ratio of oxides and silicates as in the starting material. This can be interpreted as a result of the transformation of goethite to hematite in the first step of firing (in air), and as a reduction of hematite to magnetite in the second step of firing (closed from air). A significant difference was found in the distribution of iron at the Fe2+ and Fe3+ cation sites in the black surface (more Fe2+) and at the dark gray bulk of the fired pottery (less Fe2+), showing that the reduction of Fe3+ occurs in the silicates instead of further reduction of the magnetite (e.g., to wüstite).  相似文献   

10.
Coordination number of network-former (NWF) and formation of nonbridging oxygen (NBO) at the site neighboring to NWF can be estimated from Mössbauer measurements, since small amounts of Fe3+ and Sn4+ substitute NWF in several oxide glasses. Gamma-ray or thermal neutron irradiation of oxide glasses causes electron or charge transfer from oxygen to the Mössbauer ions, and the probability depends on the fraction of NBO. On the contrary, -ray irradiation of phosphate glasses results in oxidation of Fe2+ to Fe3+ since iron plays a role of network modifier (NWM) at interstitial sites. Debye temperature D obtained from low-temperature Mössbauer measurements reflects the site occupation of Mössbauer ions in glasses. A linear relationship between glass transition temperature (T g ) and quadrupole splitting () of Fe3+,T g — rule, is also effective for determining the site occupation of Mössbauer ions.  相似文献   

11.
Using Mössbauer spectroscopy the quinolinates of iron/II/ and iron/III/ have been studied. In iron/II/ quinolinate three sublattices were evidenced, two of them being attributed to Fe2+ ions and the third to Fe3+ impurities. In the iron/III/ quinolinate five structural sublattices were found, two of them containing Fe3+ ions, the other two Fe2+ ions and the fifth may be attributed to the interstitial Fe3+ ions.  相似文献   

12.
Some Hungarian zeolites have been studied by Mössbauer spectroscopy. It has been found that Fe3+ ions substitute for Si4+ in tetrahedral position, while Fe2+ ions are chargecompensating cations in octahedral sites.  相似文献   

13.
The effect of electrochemical hydrogenation was investigated in Fe90Zr10 and Fe89Zr11 amorphous alloys by means of57Fe Mössbauer spectroscopy. Significant changes in the Mössbauer spectra as well as in the hyperfine field distribution of hydrogenated samples were found with increasing hydrogen concentration. It was established that the dependence of Curie temperature on hydrogen content had a maximum, and the hydrogen had two mean localization sites. By comparing the Mössbauer spectra of hydrogenated samples as-quenched and annealed before hydrogenation it was shown that low-temperature relaxation processes were going on at aging temperature as low as 150°C in this amorphous alloy and the low-temperature relaxation processes modify the localization of hydrogen. The combination of the hydrogenation and Mössbauer techniques gives a very sensitive method for detecting structural changes.  相似文献   

14.
193Ir and 57Fe Mössbauer spectroscopy was used to investigate the structure of the [Fe2Ir2(CO)12]2- cluster compound and the adsorption of this cluster on hydrated MgO. Supported samples were prepared by impregnation of the magnesia with solutions of [Et4N]2[Fe2Ir2(CO)12] in acetone. The Mössbauer and FT-IR spectra of the MgO-supported cluster confirm that the bimetallic carbonyl is molecularly physisorbed onto MgO without undergoing any transformation or decomposition. The easy solvent extraction of the intact cluster from the oxide surface excludes ion pairing between the cluster anion and the Mg2+ surface sites. Mössbauer spectra are in agreement with the refined structure of the molecular cluster and the temperature dependence of the 57Fe Mössbauer spectra above 80 K is consistent with the low degree of interaction of the cluster with the support. This technique, therefore, appears to be promising in order to infer structural information when X-ray determination fails.  相似文献   

15.
Acrylonitrile-styrene /AN-St/ copolymers of different compositions were prepared, with and without ferric chloride by free radical polymerization. It was found using Mössbauer spectroscopy that reduction of Fe3+ to Fe2+ takes place during the polymerization. The addition of ferric chloride and the reduction of Fe3+ was found to influence the thermal stability of the copolymers.  相似文献   

16.
Fe x Ni1-x Cl2 is a mixed metal chloride and a random mixture with competing orthogonal spin anisotropies. In pure systems, Fe2+ shows a preferential spin inclination to the c-axis, while Ni2+ shows a weak spin anisotropy in the c-plane. Mössbauer spectra of the Fe x Ni1-x Cl2 system (0.034<x<0.079) observed below the Néel temperature (T N ) are composed of two types of sub-spectra: spectra I and II. We report the Mössbauer study of the magnetic behavior of different types of Fe2+ spins.  相似文献   

17.
Iron-doped silicate (zircon), prepared by a ceramic method with the addition of LiF as mineralizer, was analyzed by X-ray powder diffraction (XRD) and 57Fe Mössbauer spectroscopy to obtain information on the solid solution formation. The results of X-ray diffraction and Mössbauer spectroscopy have shown that only a small fraction of iron, about 1.5 mol%, is incorporated in the zircon structure as paramagnetic Fe3+ species while the remaining Fe3+ cations form magnetic -Fe2O3 particles which are trapped within the zircon matrix.  相似文献   

18.
The chemical reactions between iron(III) and indole-3-acetic (IAA), -propionic (IPA), and -butyric (IBA) acids were studied in acidic aqueous solutions. The motivation of this work was that IAA is one of the most powerful natural plant-growth-regulating substances (phytohormones of the auxin series). Mössbauer spectra of the frozen aqueous solutions of iron(III) with indole-3-alkanoic acids as ligands (L), showed parallel reactions between Fe3+ and the ligands. Partly, it resulted in a complex formation which precipitated in aqueous solution and partly, in a redox process with iron(II) and the oxidised indole-3-alkanoic acids as products. The Mössbauer parameters of the Fe2+ species suggested a hexaaquo coordination environment. The chemical composition and coordination structure of the precipitated complexes were investigated using elemental analysis, Mössbauer spectroscopy, Fourier transform infrared (FTIR) and Raman spectroscopic techniques. The complexes were soluble in some organic solvents. So, Mössbauer, FTIR and solution X-ray diffraction measurements were carried out on the solution of complexes in acetone, hexadeutero acetone and methanol, respectively. The data obtained supported the existence of the μ-dihydroxo-bridging structure of the dimer: [L2Fe<(OH)2>FeL2] (where L is indole-3-propionate, -acetate or -butyrate).  相似文献   

19.
Summary FeIII complexes of a tetradentate ligand with pendant benzimidazolyl groups have been synthesized and characterized. Room temperature Mössbauer spectra depict a quadruple split doublet in the case of NO inf3 p– as co-ligand, while a nearly symmetrical one line spectrum is obtained for complexes with Clas co-ligand. The isomer shift values are towards the lower end of the range found for other high spin FeIII complexes. 1H-n.m.r. spectra of the complexes reveal relatively broad linewidths with large isotropic shifts. Paramagnetically shifted resonances are observed in the range of –10.0–+70.0 p.p.m.Author to whom all correspondence should be directed.  相似文献   

20.
57Fe Mössbauer spectroscopy measurements were performed on the perovskite compounds Eu0.7Pr0.3Ba2(Cu0.99 57Fe0.01)3O7-, EuBa1.5Pr0.5(Cu0.99 57Fe0.01)3O7- and EuBa1.3Pr0.7(Cu0.99 57Fe0.01)3O7-. The observed 57Fe Mössbauer spectra provided an evidence for the correct site assignment of subspectra originating from 57Fe in different microenvironments. Apart from a minor component which was assigned to the 57Fe in the Cu(2) site of the copper oxide plane, all the subspectra could be attributed to the 57Fe in the Cu(1) copper oxide chain site with a fourfold (doublet D1), fivefold (doublet D2) or sixfold (doublet D3) oxygen coordination. In contrast, in the compound EuBa2(Cu0.99 57Fe0.01)3O7- the 6-coordinated (D3) species has not been observed. The substitution of Pr for Eu or for Ba resulted in an increased occupancy of the O(5) antichain oxygen sites, which was explained by the charge neutrality criterion. Especially, the replacement of Ba2+ with Pr3+ led to an unusually high degree of occupancy of O(5) sites. In the 57Fe Mössbauer spectra the relative area of the 6-coordinated species (D3) increased, and that of the 4-coordinated one (D1) vanished completely in the case when Pr was substituted for Ba. Furthermore, the proportion of the 6-coordinated (D3) species increased at the expense of the 5-coordinated (D2) one with an increasing concentration of Pr at the Ba site. These experimental results are consistent with the variety of Mössbauer results reported so far.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号