首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Lactobacillus fermentum is a lactic acid bacterium of probiotic importance, which is found ubiquitously in fermented milk products. Bile salt hydrolase (BSH) has a significant role in affording probiotic properties to lactobacilli. In the present study, two bsh genes encoding BSH1 and BSH2 were identified from the draft genome sequence of L. fermentum MTCC 8711. Nucleotide comparison revealed no significant similarity between bsh1 and bsh2 genes, whereas the deduced amino acid sequences showed 26 % sequence similarity between both BSH1 and BSH2. Pfam analysis revealed the presence of cys-2 active site residues in the catalytic pocket of both BSH1 and BSH2 highly essential for catalysis. Phylogentic analysis of BSH1 and BSH2 revealed the possible independent origin of these proteins in Lactobacillus. We cloned these genes in pSLp111.3, a Lactobacillus expression vector with signal peptide A (slpA) and expressed in the native L. fermentum strain for overexpression and extracellular secretion. The bsh1 gene failed to express and to produce promising BSH activity. However, bsh2 gene was overexpressed and the recombinant strain showed improved BSH activity. Induction of the recombinant strain with an optimal 2 % xylose concentration secreted 0.5 U/ml of the BSH into extracellular medium. Furthermore, the recombinant strain was able to completely assimilate the 100-μg/ml cholesterol within 24 h, whereas the native strain took 72 h for the complete assimilation of cholesterol.  相似文献   

2.
We present the development and applications of dielectric elastomers. For the last 10 years the significance of this class of polymers has risen as more applications seem possible and first products have been commercialized.  相似文献   

3.
Brownian dynamics simulations for a coarse-grained model have been performed to study the formation of micelles from bile salts and mixed micelles with dipalmitoyl-phosphatidylcholine (DPPC) in aqueous solutions. The particular association behavior of bile salts as facial surfactants was shown to be caused by their special molecular architecture with a hydrophilic and a hydrophobic side. The experimentally observed smooth transition into the micellar region with increasing concentration is reproduced. Micelle size distributions have been evaluated at different bile salt concentrations. Typical structures of pure bile salt micelles could be identified. The composition and the structure of mixed micelles have been studied in their dependence on the bile salt/lipid concentration ratio in the aqueous solution. We have found that the bile salt fraction in the mixed micelles increases considerably with increasing bile salt/lipid concentration ratio and decreasing micelle size. The structural and thermodynamic features of micelle formation in the aqueous bile salt solutions with DPPC, which we have studied with the coarse-grained model, are in good qualitative agreement with experimental findings.  相似文献   

4.
A thermophilic microorganism growing within the temperature range of 40–65 °C (optimum at 55 °C) was isolated from hot water springs near Konkan, Maharashtra, India. Based on 16S rDNA sequence analysis, it was concluded that the isolate belongs to the genus Brevibacillus. The present paper reports the isolation, identification, and standardization of fermentation conditions for the production of enzyme, bile salt hydrolase (EC 3.5.1.24) which is produced intracellularly at high temperatures. This is the first report regarding the production of bile salt hydrolase from a thermophilic source. Optimization of fermentation conditions resulted in a 2.9-fold enhancement in enzyme production.  相似文献   

5.
6.
Abstract— The combination of steady-state and time-resolved quenching experiments was employed to study the aggregation behavior of sodium cholate at concentrations below 50 mAf. Naphthalene, anthracene and pyrene were used as fluorescent probe molecules, and protection by the aggregates from aqueous quenchers, as well as the onset of aggregation at low sodium cholate concentrations, was dependent on the shape of the probes. Protection from aqueous quenchers was inferred by comparing the efficiency for dynamic quenching in the absence and presence of sodium cholate and was best for naphthalene followed by pyrene and anthracene. Static quenching was observed, suggesting that probe molecules are located in an aggregate environment that also contains iodide. The incorporation of pyrene at low sodium cholate concentrations, as well as the small degree of static quenching observed, suggest that the shape complementarity, i.e. hydrophobic surface and packing, between pyrene and sodium cholate is optimum for aggregate formation.  相似文献   

7.
The manufacturing of ophthalmic lenses is one of the most important markets worldwide and, therefore, strong research efforts are undertaken to continuously improve the quality of the products, either silicate glasses or organic polymer lenses. Hybrid sol-gel based materials play a major role in this highly competitive field and have contributed significantly to the commercial success of the organic base materials. Recent developments concern fast curing and patternable coatings that might soon become part of this business. The compatibility of hybrid sol-gel materials either with organic dyes or with inorganic vacuum borne coatings offers further possibilities to develop highly sophisticated lenses meeting not only customer needs like perfect corrective function, high optical quality and protection, but also high durability as well as cosmetic and decorative aspects. An overview and a few recent developments are outlined below.  相似文献   

8.
This Review summarizes advances in fluorination by C(sp2)?H and C(sp3)?H activation. Transition‐metal‐catalyzed approaches championed by palladium have allowed the installation of a fluorine substituent at C(sp2) and C(sp3) sites, exploiting the reactivity of high‐oxidation‐state transition‐metal fluoride complexes combined with the use of directing groups (some transient) to control site and stereoselectivity. The large majority of known methods employ electrophilic fluorination reagents, but methods combining a nucleophilic fluoride source with an oxidant have appeared. External ligands have proven to be effective for C(sp3)?H fluorination directed by weakly coordinating auxiliaries, thereby enabling control over reactivity. Methods relying on the formation of radical intermediates are complementary to transition‐metal‐catalyzed processes as they allow for undirected C(sp3)?H fluorination. To date, radical C?H fluorinations mainly employ electrophilic N?F fluorination reagents but a unique MnIII‐catalyzed oxidative C?H fluorination using fluoride has been developed. Overall, the field of late‐stage nucleophilic C?H fluorination has progressed much more slowly, a state of play explaining why C?H 18F‐fluorination is still in its infancy.  相似文献   

9.
Due to the topological effect, cyclic polymers demonstrate different and unique physical and biological properties in comparison with linear counterparts having the same molecular-weight range. With advanced synthetic and analytic technologies, cyclic polymers with different topologies, e.g. multicyclic polymers, have been reported and well characterized. For example, various cyclic DNA and related structures, such as cyclic duplexes, have been prepared conveniently by click chemistry. These types of DNA have increased resistance to enzymatic degradation and have high thermodynamic stability, and thus, have potential therapeutic applications. In addition, cyclic polymers have also been used to prepare organic–inorganic hybrids for applications in catalysis, e.g. catalyst supports. Due to developments in synthetic technology, highly pure cyclic polymers could now be produced in large scale. Therefore, we anticipate discovering more applications in the near future. Despite their promise, cyclic polymers are still less explored than linear polymers like polyolefins and polycarbonates, which are widely used in daily life. Some critical issues, including controlling the molecular weight and finding suitable applications, remain big challenges in the cyclic-polymer field. This review briefly summarizes the commonly used synthetic methodologies and focuses more on the attractive functional materials and their biological properties and potential applications.  相似文献   

10.
Molecular imaging is the visual representation of biological processes that take place at the cellular or molecular level in living organisms. To date, molecular imaging plays an important role in the transition from conventional medical practice to precision medicine. Among all imaging modalities, positron emission tomography (PET) has great advantages in sensitivity and the ability to obtain absolute imaging quantification after corrections for photon attenuation and scattering. Due to the ability to label a host of unique molecules of biological interest, including endogenous, naturally occurring substrates and drug-like compounds, the role of PET has been well established in the field of molecular imaging. In this article, we provide an overview of the recent advances in the development of PET radiopharmaceuticals and their clinical applications in oncology.  相似文献   

11.
Bile acids play a significant role in the digestion of nutrients. In addition, bile acids perform a signaling function through their blood-circulating fraction. They regulate the activity of nuclear and membrane receptors, located in many tissues. The gut microbiota is an important factor influencing the effects of bile acids via enzymatic modification. Depending on the rate of healthy and pathogenic microbiota, a number of bile acids may support lipid and glucose homeostasis as well as shift to more toxic compounds participating in many pathological conditions. Thus, bile acids can be possible biomarkers of human pathology. However, the chemical structure of bile acids is similar and their analysis requires sensitive and specific methods of analysis. In this review, we provide information on the chemical structure and the biosynthesis of bile acids, their regulation, and their physiological role. In addition, the review describes the involvement of bile acids in various diseases of the digestive system, the approaches and challenges in the analysis of bile acids, and the prospects of their use in omics technologies.  相似文献   

12.
熔盐电化学的新进展   总被引:11,自引:2,他引:11  
杨绮琴  段淑贞 《电化学》2001,7(1):10-17
本文主要介绍熔盐体系、熔盐电池、熔盐电沉积金属以及合金、电合成化合物材料等方面的新进展 ,预期熔盐电化学在能源、环境保护和资源利用等领域中的应用 .  相似文献   

13.
There has been a recent upsurge in the study and application of approaches utilizing cyclotriphosphate 1 (cyclo-TP, also known as trimetaphosphate, TMP) and/or proceeding through its analogues in synthetic chemistry to access modified oligo- and polyphosphates. This is especially useful in the area of chemical nucleotide synthesis, but by no means restricted to it. Enabled by new high yielding and easy-to-implement methodologies, these approaches promise to open up an area of research that has previously been underappreciated. Additionally, refinements of concepts of prebiotic phosphorylation chemistry have been disclosed that ultimately rely on cyclo-TP 1 as a precursor, placing it as a potentially central compound in the emergence of life. Given the importance of such concepts for our understanding of prebiotic chemistry in combination with the need to readily access modified polyphosphates for structural and biological studies, this paper will discuss selected recent developments in the field of cyclo-TP chemistry, briefly touch on ultraphosphate chemistry, and highlight areas in which further developments can be expected.  相似文献   

14.
The present work aims to examine the worrying problem of antibiotic resistance and the emergence of multidrug-resistant bacterial strains, which have now become really common in hospitals and risk hindering the global control of infectious diseases. After a careful examination of these phenomena and multiple mechanisms that make certain bacteria resistant to specific antibiotics that were originally effective in the treatment of infections caused by the same pathogens, possible strategies to stem antibiotic resistance are analyzed. This paper, therefore, focuses on the most promising new chemical compounds in the current pipeline active against multidrug-resistant organisms that are innovative compared to traditional antibiotics: Firstly, the main antibacterial agents in clinical development (Phase III) from 2017 to 2020 are listed (with special attention on the treatment of infections caused by the pathogens Neisseria gonorrhoeae, including multidrug-resistant isolates, and Clostridium difficile), and then the paper moves on to the new agents of pharmacological interest that have been approved during the same period. They include tetracycline derivatives (eravacycline), fourth generation fluoroquinolones (delafloxacin), new combinations between one β-lactam and one β-lactamase inhibitor (meropenem and vaborbactam), siderophore cephalosporins (cefiderocol), new aminoglycosides (plazomicin), and agents in development for treating drug-resistant TB (pretomanid). It concludes with the advantages that can result from the use of these compounds, also mentioning other approaches, still poorly developed, for combating antibiotic resistance: Nanoparticles delivery systems for antibiotics.  相似文献   

15.
An approach for tailoring self‐assembled tubular structures is described. By controlling the relative composition of a two‐component surfactant mixture comprising the natural bile salt lithocholate and its bolamphiphilic derivative, it was possible to finely tune the nanotube cross‐section of the mixed tubular aggregates that self‐associated spontaneously in aqueous solution at pH 12. The diameter was found to vary up to 50 % when the stoichiometric ratio of the two bile salts was changed. The tuning of supramolecular nanochannels with such remarkable precision is of significant interest for technological applications of these materials.  相似文献   

16.
17.
漆晨阳  涂晶 《化学进展》2022,34(11):2540-2560
耐药性细菌和生物膜相关的感染性疾病严重威胁全球公众健康。随着纳米技术在抗菌领域的渗透和发展,研发基于无抗生素的新型纳米抗菌剂在避免耐药性产生以及抗菌治疗方式的选择方面提供更多可能性。本文从细菌耐药性的产生机制出发,阐述利用纳米材料自身独特的理化性质,实现自体抗菌;作为纳米酶,利用类酶活性催化底物产生活性氧簇(ROS)等抗菌;随后讨论了构建随内源性/外源性环境刺激响应,以及协同多种新型治疗方式的智能纳米抗菌剂,实现高效抗菌。最后,提出了目前面临的挑战及临床应用前景,为开发更加安全、高效的纳米抗菌剂提供借鉴。  相似文献   

18.
Theoretical and Experimental Chemistry - The data available in the literature on the solution of the problem of nitrogen oxide neutralization (N2O, NOx) using photocatalytic approaches (by their...  相似文献   

19.
Pyrroloiminoquinones are a group of cytotoxic alkaloids most commonly isolated from marine sponges. Structurally, they are based on a tricyclic pyrrolo[4,3,2-de]quinoline core and encompass marine natural products such as makaluvamines, tsitsikammamines and discorhabdins. These diverse compounds are known to exhibit a broad spectrum of biological activities including anticancer, antiplasmodial, antimicrobial, antifungal and antiviral activities as well as the inhibition of several key cellular enzymes. The resurgence of interest in pyrroloiminoquinones and the convoluted understanding regarding their biological activities have prompted this review. Herein, we provided a concise summary of key findings and recent developments pertaining to their structural diversity, distribution, biogenesis, and their potential as chemical probes for drug development, including a discussion of promising synthetic analogs.  相似文献   

20.
After tooth loss, bone resorption is irreversible, leaving the area without adequate bone volume for successful implant treatment. Bone grafting is the only solution to reverse dental bone loss and is a well-accepted procedure required in one in every four dental implants. Research and development in materials, design and fabrication technologies have expanded over the years to achieve successful and long-lasting dental implants for tooth substitution. This review will critically present the various dental bone graft and substitute materials that have been used to achieve a successful dental implant. The article also reviews the properties of dental bone grafts and various dental bone substitutes that have been studied or are currently available commercially. The various classifications of bone grafts and substitutes, including natural and synthetic materials, are critically presented, and available commercial products in each category are discussed. Different bone substitute materials, including metals, ceramics, polymers, or their combinations, and their chemical, physical, and biocompatibility properties are explored. Limitations of the available materials are presented, and areas which require further research and development are highlighted. Tissue engineering hybrid constructions with enhanced bone regeneration ability, such as cell-based or growth factor-based bone substitutes, are discussed as an emerging area of development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号