首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present two new sensitivity enhanced gradient NMR experiments for measuring interference effects between chemical shift anisotropy (CSA) and dipolar coupling interactions in a scalar coupled two-spin system in both the laboratory and rotating frames. We apply these methods for quantitative measurement of longitudinal and transverse cross-correlation rates involving interference of 13C CSA and 13C–1H dipolar coupling in a disaccharide, α,α- -trehalose, at natural abundance of 13C as well as interference of amide 15N CSA and 15N–1H dipolar coupling in uniformly 15N-labeled ubiquitin. We demonstrate that the standard heteronuclear T1, T2, and steady-state NOE autocorrelation experiments augmented by cross-correlation measurements provide sufficient experimental data to quantitatively separate the structural and dynamic contributions to these relaxation rates when the simplifying assumptions of isotropic overall tumbling and an axially symmetric chemical shift tensor are valid.  相似文献   

2.
A recently proposed 13C–1H recoupling sequence operative under fast magic-angle spinning (MAS) [K. Takegoshi, T. Terao, Solid State Nucl. Magn. Reson. 13 (1999) 203–212.] is applied to observe 13C–1H and 15N–1H dipolar powder patterns in the 1H–15N–13C–1H system of a peptide bond. Both patterns are correlated by 15N-to-13C cross polarization to observe one- or two-dimensional (1D or 2D) correlation spectra, which can be simulated by using a simple analytical expression to determine the H–N–C–H dihedral angle. The 1D and 2D experiments were applied to N-acetyl[1,2-13C,15N] -valine, and the peptide φ angle was determined with high precision by the 2D experiment to be ±155.0°±1.2°. The positive one is in good agreement with the X-ray value of 154°±5°. The 1D experiment provided the value of φ=±156.0°±0.8°.  相似文献   

3.
The magnitudes and orientations of the 15N chemical shift tensor of [1-15N]-2′-deoxyguanosine were determined from a polycrystalline sample using the two-dimensional PISEMA experiment. The magnitudes of the principal values of the 15N chemical shift tensor of the N1 nitrogen of [1-15N]-2′-deoxyguanosine were found to be ς11 = 54 ppm, ς22 = 148 ppm, and ς33 = 201 ppm with respect to (15NH4)2SO4 in aqueous solution. Comparisons of experimental and simulated two-dimensional powder pattern spectra show that ς33N is approximately collinear with the N–H bond. The tensor orientation of ς33N for N1 of [1-15N]-2′-deoxyguanosine is similar to the values obtained for the side chain residues of 15Nε1-tryptophan and 15Nπ-histidine even though the magnitudes differ significantly.  相似文献   

4.
We present a simple method for extracting interference effects between chemical shift anisotropy (CSA) and dipolar coupling from spin relaxation measurements in macromolecules, and we apply this method to extracting cross-correlation rates involving interference of amide15N CSA and15N–1H dipolar coupling and interference of carbonyl13C′ CSA and15N–13C′ dipolar coupling, in a small protein. A theoretical basis for the interpretation of these rates is presented. While it proves difficult to quantitatively separate the structural and dynamic contributions to these cross-correlation rates in the presence of anisotropic overall tumbling and a nonaxially symmetric chemical shift tensor, some useful qualitative correlations of data with protein structure can be seen when simplifying assumptions are made.  相似文献   

5.
Based on the measurement of cross-correlation rates between (15)N CSA and (15)N-(1)H dipole-dipole relaxation we propose a procedure for separating exchange contributions to transverse relaxation rates (R(2) = 1/T(2)) from effects caused by anisotropic rotational diffusion of the protein molecule. This approach determines the influence of anisotropy and chemical exchange processes independently and therefore circumvents difficulties associated with the currently standard use of T(1)/T(2) ratios to determine the rotational diffusion tensor. We find from computer simulations that, in the presence of even small amounts of internal flexibility, fitting T(1)/T(2) ratios tends to underestimate the anisotropy of overall tumbling. An additional problem exists when the N-H bond vector directions are not distributed homogeneously over the surface of a unit sphere, such as in helix bundles or beta-sheets. Such a case was found in segment 4 of the gelation factor (ABP 120), an F-actin cross-linking protein, in which the diffusion tensor cannot be calculated from T(1)/T(2) ratios. The (15)N CSA tensor of the residues for this beta-sheet protein was found to vary even within secondary structure elements. The use of a common value for the whole protein molecule therefore might be an oversimplification. Using our approach it is immediately apparent that no exchange broadening exists for segment 4 although strongly reduced T(2) relaxation times for several residues could be mistaken as indications for exchange processes.  相似文献   

6.
A suite of 3D NMR experiments for measuring15N–{1H} NOE,15NT1, and15NTvalues in large proteins, uniformly labeled with15N and13C, is presented. These experiments are designed for proteins that exhibit extensive spectral overlap in the 2D1H–15N HSQC spectrum. The pulse sequences are readily applicable to perdeuterated samples, which increases the spectral resolution and signal-to-noise ratio, thereby permitting the characterization of protein dynamics to be extended to larger protein systems. Application of the pulse sequences is demonstrated on a perdeuterated13C/15N-labeled sample of the 44 kDa ectodomain of SIV gp41.  相似文献   

7.
In the study of protein backbone dynamics by15N relaxation measurements, an initial estimation of the isotropic global correlation time, τm, is usually obtained from the averageT1/T2ratio of nuclear spins that do not exhibit slow internal motion and withT2values not significantly shortened by chemical or conformational exchange processes. Different methods have been used for identification of the rates of internal motion. However, the number of nuclear spins included in the τmestimation is often larger than the number that ultimately can be fitted to a single-order parameter,S2, implying that some nuclear spins involved in the initial τmestimation actually have an effective internal correlation time, τe, not as fast as assumed. As a consequence, τmis underestimated, since internal motion reduces theT1/T2ratio. This situation becomes more obvious if the molecule has a large τmvalue because the reduction inT1/T2ratio arising from internal motion is more significant than for molecules with smaller τmand the same degree of internal motion. This Communication describes a more reliable method for identifying nuclear spins which should be excluded from the τmestimation because of insufficiently rapid internal motion. This results in an improved τmvalue, giving a much better agreement between the number of nuclear spins fitted successfully to a single-order parameter,S2, and those used in the τmestimation.  相似文献   

8.
We compare 29Si magic-angle spinning (MAS) nuclear magnetic resonance (NMR) spectra from the two modifications of silicon nitride, α-Si3N4 and β-Si3N4, with that of a fully (29Si, 15N)-enriched sample 29Si315N4, as well as 15N NMR spectra of Si315N4 (having 29Si at natural abundance) and 29Si315N4. We show that the 15N NMR peak-widths from the latter are dominated by J(29Si–15N) through-bond interactions, leading to significantly broader NMR signals compared to those of Si315N4. By fitting calculated 29Si NMR spectra to experimental ones, we obtained an estimated coupling constant J(29Si–15N) of 20 Hz. We provide 29Si spin-lattice (T1) relaxation data for the 29Si315N4 sample and chemical shift anisotropy results for the 29Si site of β-Si3N4. Various factors potentially contributing to the 29Si and 15N NMR peak-widths of the various silicon nitride specimens are discussed. We also provide powder X-ray diffraction (XRD) and mass spectrometry data of the samples.  相似文献   

9.
13C and 2H spin–lattice relaxation times have been determined by inversion recovery in a range of site-specific 13C- and 2H-labeled saccharides under identical solution conditions, and the data were used to calculate deuterium nuclear quadrupolar coupling constants (2H NQCC) at specific sites within cyclic and acyclic forms in solution. 13C T1 values ranged from 0.6 to 8.2 s, and 2H T1 values ranged from 79 to 450 ms, depending on molecular structure (0.4 M sugar in 5 mM EDTA (disodium salt) in 2H2O-depleted H2O, pH 4.8, 30°C). In addition to providing new information on 13C and 2H relaxation behavior of saccharides in solution, the resulting 2H1 NQCC values reveal a dependency on anomeric configuration within aldopyranose rings, whereas 2H NQCC values at other ring sites appear less sensitive to configuration at C1. In contrast, 2H NQCC values at both anomeric and nonanomeric sites within aldofuranose rings appear to be influenced by anomeric configuration. These experimental observations were confirmed by density functional theory (DFT) calculations of 2H NQCC values in model aldopyranosyl and aldofuranosyl rings.  相似文献   

10.
Spin relaxation is a sensitive probe of molecular structure and dynamics. Correlation of relaxation time constants, such as T1 and T2, conceptually similar to the conventional multidimensional spectroscopy, have been difficult to determine primarily due to the absense of an efficient multidimensional Laplace inversion program. We demonstrate the use of a novel computer algorithm for fast two-dimensional inverse Laplace transformation to obtain T1T2 correlation functions. The algorithm efficiently performs a least-squares fit on two-dimensional data with a nonnegativity constraint. We use a regularization method to find a balance between the residual fitting errors and the known noise amplitude, thus producing a result that is found to be stable in the presence of noise. This algorithm can be extended to include functional forms other than exponential kernels. We demonstrate the performance of the algorithm at different signal-to-noise ratios and with different T1T2 spectral characteristics using several brine-saturated rock samples.  相似文献   

11.
This study investigates the effects of developmental stage and muscle type on the mobility and distribution of water within skeletal muscles, using low-field 1H-NMR transverse relaxation measurements in vitro on four different porcine muscles (M. longissimus dorsi, M. semitendinosus, M. biceps femoris, M. vastus intermedius) from a total of 48 pigs slaughtered at various weight classes between 25 kg and 150 kg. Principal component analysis (PCA) revealed effects of both slaughter weight and muscle type on the transverse relaxation decay. Independent of developmental stage and muscle type, distributed exponential analysis of the NMR T2 relaxation data imparted the existence of three distinct water populations, T2b, T21, and T22, with relaxation times of approximately 1–10, 45–120, and 200–500 ms, respectively. The most profound change during muscle growth was a shift toward faster relaxation in the intermediate time constant, T21. It decreased by approx. 24% in all four muscle types during the period from 25 to 150 kg live weight. Determination of dry matter, fat, and protein content in the muscles showed that the changes in relaxation time of the intermediate time constant, T21, during growth should be ascribed mainly to a change in protein content, as the protein content explained 77% of the variation in the T21 time constant. Partial least squares (PLS) regression revealed validated correlations in the region of 0.58 to 0.77 between NMR transverse relaxation data and muscle development for all the four muscle types, which indicates that NMR relaxation measurements may be used in the prediction of muscle developmental stage.  相似文献   

12.
A three-dimensional approach for measuring 15N relaxation times is described. Instead of selecting particular values for the relaxation period, in the proposed method the relaxation period is incremented periodically in order to create a 3D spectrum. This additional frequency domain of the transformed spectrum contains the relaxation time information in the T1 and T2 linewidths, and thus the longitudinal and transverse 15N relaxation times can be measured without determination of 2D cross peak volumes/intensities and subsequent curve fitting procedures.  相似文献   

13.
In experiments on SL heteronuclear spin systems with evolution of the S-spin magnetization under the influence of a quadrupolar nucleus (L-spin), effects of longitudinal quadrupolar (T1Q) relaxation of the L-spin coherence on the sub-millisecond time scale have been documented and explored, and methods for minimizing their effect have been demonstrated. The longitudinal relaxation results in heteronuclear dephasing even in the reference signal S0 of S{L} REDOR, REAPDOR, RIDER, or SPIDER experiments, due to T1Q-relaxation of the transiently generated SyLz coherence, reducing or even eliminating the observable dephasing ΔS. Pulse sequences for measuring an improved reference signal S00 with minimal heteronuclear recoupling but the same number of pulses as for S0 and S have been demonstrated. From the observed intensity ΔS0 = S00 − S0 and the SPIDER signal ΔS/S0, T1Q can be estimated. Accelerated decays analogous to the dipolar S0 curves will occur in T2 measurements for J-coupled SL spin pairs. Even in the absence of recoupling pulses, fast T1Q relaxation of the unobserved nucleus shortens the transverse relaxation time T2S,MAS of the observed nucleus, in particular at low spinning frequencies, due to unavoidable heteronuclear dipolar evolution during a rotation period. The observed spinning-frequency dependence of T2S,MAS matches the theoretical prediction and may be used to estimate T1Q. The effects are demonstrated on several 13C{14N} spin systems, including an arginine derivative, the natural N-acetylated polysaccharide chitin, and a model peptide, (POG)10.  相似文献   

14.
A novel method for suppression of diagonal peaks in the amide region of NOESY NMR spectra of 15N-labeled proteins is presented. The method is particularly useful for larger proteins at high magnetic fields where interference between dipolar and chemical shift anisotropy relaxation mechanisms results in large TROSY effects, i.e., large differences in 1HN linewidths depending on the spin state of attached 15N nuclei. In this limit the new TROSY NOESY method does not compromise sensitivity. It is demonstrated using a perdeuterated 15N-labeled protein sample, Neural Cell Adhesion Molecule 213–308 (NCAM) from rat, in H2O at 800 MHz.  相似文献   

15.
Improved methods for three-dimensional TROSY-Type HCCH correlation involving protons of negligible CSA are presented. The TROSY approach differs from the conventional approach of heteronuclear decoupling in evolution and detection periods by not mixing fast and slowly relaxing coherences and usually suppressing the former. Pervushin et al. (J. Am. Chem. Soc. 120, 6394–6400 (1998)) have proposed a 3D TROSY-type HCCH experiment where the TROSY approach is applied only in one of the 13C dimensions. A new pulse sequence applying the TROSY approach in both indirect dimensions is advantageous when the TROSY effect of the carbons is large or when a relatively high resolution is required. For lower resolutions or moderate TROSY effects we show that it is possible to combine the best of both worlds, namely to suppress heteronuclear couplings without mixing fast and slowly relaxing coherences while at the same time superimpose the two components and thus have both contribute to the detected signal. That is possible using the novel technique of Spin-State-Selective Time-Proportional Phase Incrementation (S3 TPPI). The new 3D S3 TPPI TROSY HCCH method is demonstrated on a 13C,15N-labeled protein sample, RAP 18–112 (N-terminal domain of α2-macroglobulin receptor associated protein), at 750 MHz and average sensitivity enhancements of 10% are obtained for the cross peaks in comparison to methods based on conventional decoupling on one of the carbons or on TROSY on both carbons.  相似文献   

16.
Measurement ofT2G, the Gaussian component of the spin-echo envelope of planar Cu nuclei in high-temperature superconductors, gives important information about the real part of the Cu electron spin susceptibility. In the traditional picture of the planar Cu echo decay, the internuclear coupling is assumed to remain static with respect to spin–lattice relaxation and mutual exchange fluctuations. In some circumstances, however, this assumption breaks down. We calculate the internuclear corrections arising from spin–lattice relaxation to the conventional theory ofT2Gand show thatT2Gcan be easily corrected for these effects. We argue that mutual exchanges due to the perpendicular indirect couplings are suppressed in these materials. For YBa2Cu4O8, we find a correction on the order of 10% inT2Gand using the corrected values we find that the isotope ratio63T2G/65T2Gagrees with theory.  相似文献   

17.
A protocol is presented for correcting the effect of non-specific cross-polarization in CHHC solid-state MAS NMR experiments, thus allowing the recovery of the 1H–1H magnetization exchange functions from the mixing-time dependent buildup of experimental CHHC peak intensity. The presented protocol also incorporates a scaling procedure to take into account the effect of multiplicity of a CH2 or CH3 moiety. Experimental CHHC buildup curves are presented for l-tyrosine·HCl samples where either all or only one in 10 molecules are U–13C labeled. Good agreement between experiment and 11-spin SPINEVOLUTION simulation (including only isotropic 1H chemical shifts) is demonstrated for the initial buildup (tmix < 100 μs) of CHHC peak intensity corresponding to an intramolecular close (2.5 Å) H–H proximity. Differences in the initial CHHC buildup are observed between the one in 10 dilute and 100% samples for cases where there is a close intermolecular H–H proximity in addition to a close intramolecular H–H proximity. For the dilute sample, CHHC cross-peak intensities tended to significantly lower values for long mixing times (500 μs) as compared to the 100% sample. This difference is explained as being due to the dependence of the limiting total magnetization on the ratio Nobs/Ntot between the number of protons that are directly attached to a 13C nucleus and hence contribute significantly to the observed 13C CHHC NMR signal, and the total number of 1H spins into the system. 1H–1H magnetization exchange curves extracted from CHHC spectra for the 100% l-tyrosine·HCl sample exhibit a clear sensitivity to the root sum squared dipolar coupling, with fast buildup being observed for the shortest intramolecular distances (2.5 Å) and slower, yet observable buildup for the longer intermolecular distances (up to 5 Å).  相似文献   

18.
The NMR spectra of solutions of 30%17O-enriched H2O and D2O in nitromethane display the resonances of the three isotopomers H2O, HDO, and D2O. All17O,1H and17O,2H coupling constants and the primary and secondary isotope effects onJ(17O,1H) have been determined. The primary effect is −1.0 ± 0.2 Hz and the secondary effect is −0.07 ± 0.04 Hz. Using integrated intensities in the17O NMR spectra, the equilibrium constant for the reaction H2O + D2O 2HDO is found to be 3.68 ± 0.2 at 343 K. From the relative integrated intensities of proton-coupled and -decoupled spectra the17O–{1H} NOE is estimated for the first time, resulting in values of 0.908 and 0.945 for H2O and HDO, respectively. This means that dipole–dipole interactions contribute about 2.5% to the overall17O relaxation rate in H2O dissolved in nitromethane.  相似文献   

19.
Two new two- or three-dimensional NMR methods for measuring 3hJC′N and 2hJC′H coupling constants across hydrogen bonds in proteins are presented. They are tailored to suit the size of the TROSY effect, i.e., the degree of interference between dipolar and chemical shift anisotropy relaxation mechanisms. The methods edit 2D or 3D spectra into two separate subspectra corresponding to the two possible spin states of the 1HN spin during evolution of 13CO coherences. This allows 2hJC′H to be measured in an E.COSY-type way while 3hJC′N can be measured in the so-called quantitative way provided a reference spectrum is also recorded. A demonstration of the new methods is shown for the 15N,13C-labeled protein chymotrypsin inhibitor 2.  相似文献   

20.
Measurement of both longitudinal and transverse relaxation interference (cross-correlation) between13C chemical shift anisotropy and13C–1H dipolar interactions is described. The ratio of the transverse to longitudinal cross-correlation rates readily yields the ratio of spectral densitiesJ(0)/JC), independent of any structural attributes such as internuclear distance or chemical shift tensor. The spectral density at zero frequencyJ(0) is also independent of chemical exchange effects. With limited internal motions, the ratio also enables an accurate evaluation of the correlation time for overall molecular tumbling. Applicability of this approach to investigating dynamics has been demonstrated by measurements made at three temperatures using a DNA decamer duplex with purines randomly enriched to 15% in13C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号