首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider the space A(\mathbbT)A(\mathbb{T}) of all continuous functions f on the circle \mathbbT\mathbb{T} such that the sequence of Fourier coefficients [^(f)] = { [^(f)]( k ), k ? \mathbbZ }\hat f = \left\{ {\hat f\left( k \right), k \in \mathbb{Z}} \right\} belongs to l 1(ℤ). The norm on A(\mathbbT)A(\mathbb{T}) is defined by || f ||A(\mathbbT) = || [^(f)] ||l1 (\mathbbZ)\left\| f \right\|_{A(\mathbb{T})} = \left\| {\hat f} \right\|_{l^1 (\mathbb{Z})}. According to the well-known Beurling-Helson theorem, if f:\mathbbT ? \mathbbT\phi :\mathbb{T} \to \mathbb{T} is a continuous mapping such that || einf ||A(\mathbbT) = O(1)\left\| {e^{in\phi } } \right\|_{A(\mathbb{T})} = O(1), n ∈ ℤ then φ is linear. It was conjectured by Kahane that the same conclusion about φ is true under the assumption that || einf ||A(\mathbbT) = o( log| n | )\left\| {e^{in\phi } } \right\|_{A(\mathbb{T})} = o\left( {\log \left| n \right|} \right). We show that if $\left\| {e^{in\phi } } \right\|_{A(\mathbb{T})} = o\left( {\left( {{{\log \log \left| n \right|} \mathord{\left/ {\vphantom {{\log \log \left| n \right|} {\log \log \log \left| n \right|}}} \right. \kern-\nulldelimiterspace} {\log \log \log \left| n \right|}}} \right)^{1/12} } \right)$\left\| {e^{in\phi } } \right\|_{A(\mathbb{T})} = o\left( {\left( {{{\log \log \left| n \right|} \mathord{\left/ {\vphantom {{\log \log \left| n \right|} {\log \log \log \left| n \right|}}} \right. \kern-\nulldelimiterspace} {\log \log \log \left| n \right|}}} \right)^{1/12} } \right), then φ is linear.  相似文献   

2.
We consider the operator exponential e tA , t > 0, where A is a selfadjoint positive definite operator corresponding to the diffusion equation in \mathbbRn {\mathbb{R}^n} with measurable 1-periodic coefficients, and approximate it in the operator norm ||   ·   ||L2( \mathbbRn ) ? L2( \mathbbRn ) {\left\| {\; \cdot \;} \right\|_{{{L^2}\left( {{\mathbb{R}^n}} \right) \to {L^2}\left( {{\mathbb{R}^n}} \right)}}} with order O( t - \fracm2 ) O\left( {{t^{{ - \frac{m}{2}}}}} \right) as t → ∞, where m is an arbitrary natural number. To construct approximations we use the homogenized parabolic equation with constant coefficients, the order of which depends on m and is greater than 2 if m > 2. We also use a collection of 1-periodic functions N α (x), x ? \mathbbRn x \in {\mathbb{R}^n} , with multi-indices α of length | a| \leqslant m \left| \alpha \right| \leqslant m , that are solutions to certain elliptic problems on the periodicity cell. These results are used to homogenize the diffusion equation with ε-periodic coefficients, where ε is a small parameter. In particular, under minimal regularity conditions, we construct approximations of order O(ε m ) in the L 2-norm as ε → 0. Bibliography: 14 titles.  相似文献   

3.
Let W ì \mathbbRn \Omega \subset \mathbb{R}^n be an open set and l(x) | u |p,l = ( òW lp (x)| u(x) |p dx )1/p \text (1 \leqslant p < + ¥\text),\left| u \right|_{p,l} = \left( {\int\limits_\Omega {l^p (x)\left| {u(x)} \right|^p dx} } \right)^{1/p} {\text{ (1}} \leqslant p < + \infty {\text{),}}  相似文献   

4.
Let ${\mathcal{P}_{d,n}}Let Pd,n{\mathcal{P}_{d,n}} denote the space of all real polynomials of degree at most d on \mathbbRn{\mathbb{R}^n} . We prove a new estimate for the logarithmic measure of the sublevel set of a polynomial P ? Pd,1{P\in \mathcal{P}_{d,1}} . Using this estimate, we prove that
supP ? Pd,n| p.v\mathbbRneiP(x)\fracW(x/|x|)|x|ndx| £ c log d (||W||L logL(Sn-1)+1),\mathop{\rm sup}\limits_ {P \in \mathcal{P}_{d,n}}\left| p.v.\int_{\mathbb{R}^{n}}{e^{iP(x)}}{\frac{\Omega(x/|x|)}{|x|^n}dx}\right | \leq c\,{\rm log}\,d\,(||\Omega||_L \log L(S^{n-1})+1),  相似文献   

5.
Let J:\mathbbR ? \mathbbRJ:\mathbb{R} \to \mathbb{R} be a nonnegative, smooth compactly supported function such that ò\mathbbR J(r)dr = 1. \int_\mathbb{R} {J(r)dr = 1.} We consider the nonlocal diffusion problem
$ u_t (x,t) = \int_\mathbb{R} {J\left( {\frac{{x - y}} {{u(y,t)}}} \right)dy - u(x,t){\text{ in }}\mathbb{R} \times [0,\infty )} $ u_t (x,t) = \int_\mathbb{R} {J\left( {\frac{{x - y}} {{u(y,t)}}} \right)dy - u(x,t){\text{ in }}\mathbb{R} \times [0,\infty )}   相似文献   

6.
For open discrete mappings f:D\{ b } ? \mathbbR3 f:D\backslash \left\{ b \right\} \to {\mathbb{R}^3} of a domain D ì \mathbbR3 D \subset {\mathbb{R}^3} satisfying relatively general geometric conditions in D \ {b} and having an essential singularity at a point b ? \mathbbR3 b \in {\mathbb{R}^3} , we prove the following statement: Let a point y 0 belong to [`(\mathbbR3)] \f( D\{ b } ) \overline {{\mathbb{R}^3}} \backslash f\left( {D\backslash \left\{ b \right\}} \right) and let the inner dilatation K I (x, f) and outer dilatation K O (x, f) of the mapping f at the point x satisfy certain conditions. Let B f denote the set of branch points of the mapping f. Then, for an arbitrary neighborhood V of the point y 0, the set Vf(B f ) cannot be contained in a set A such that g(A) = I, where I = { t ? \mathbbR:| t | < 1 } I = \left\{ {t \in \mathbb{R}:\left| t \right| < 1} \right\} and g:U ? \mathbbRn g:U \to {\mathbb{R}^n} is a quasiconformal mapping of a domain U ì \mathbbRn U \subset {\mathbb{R}^n} such that A ⊂ U.  相似文献   

7.
Extending a result of Meyer and Reisner (Monatsh Math 125:219–227, 1998), we prove that if g: \mathbbR? \mathbbR+{g: \mathbb{R}\to \mathbb{R}_+} is a function which is concave on its support, then for every m > 0 and every z ? \mathbbR{z\in\mathbb{R}} such that g(z) > 0, one has
ò\mathbbR g(x)mdxò\mathbbR (g*z(y))m dy 3 \frac(m+2)m+2(m+1)m+3, \int\limits_{\mathbb{R}} g(x)^mdx\int\limits_{\mathbb{R}} (g^{*z}(y))^m dy\ge \frac{(m+2)^{m+2}}{(m+1)^{m+3}},  相似文献   

8.
In this paper we consider the following elliptic system in \mathbbR3{\mathbb{R}^3}
$\qquad\left\{{ll}-\Delta u+u+\lambda K(x)\phi u=a(x)|u|^{p-1}u \quad &x \in {\mathbb{R}}^{3}\\ -\Delta \phi=K(x)u^{2} \quad &x \in {\mathbb{R}}^{3}\right.$\qquad\left\{\begin{array}{ll}-\Delta u+u+\lambda K(x)\phi u=a(x)|u|^{p-1}u \quad &x \in {\mathbb{R}}^{3}\\ -\Delta \phi=K(x)u^{2} \quad &x \in {\mathbb{R}}^{3}\end{array}\right.  相似文献   

9.
The main purpose of this paper is to investigate dynamical systems F : \mathbbR2 ? \mathbbR2{F : \mathbb{R}^2 \rightarrow \mathbb{R}^2} of the form F(x, y) = (f(x, y), x). We assume that f : \mathbbR2 ? \mathbbR{f : \mathbb{R}^2 \rightarrow \mathbb{R}} is continuous and satisfies a condition that holds when f is non decreasing with respect to the second variable. We show that for every initial condition x0 = (x 0, y 0), such that the orbit
O(x0) = {x0, x1 = F(x0), x2 = F(x1), . . . }, O({\rm{x}}_0) = \{{\rm{x}}_0, {\rm{x}}_1 = F({\rm{x}}_0), {\rm{x}}_2 = F({\rm{x}}_1), . . . \},  相似文献   

10.
The Heisenberg–Pauli–Weyl (HPW) uncertainty inequality on \mathbbRn{\mathbb{R}^n} says that
|| f ||2Ca,b|| |x|a f||2\fracba+b|| (-D)b/2f||2\fracaa+b.\| f \|_2 \leq C_{\alpha,\beta}\| |x|^\alpha f\|_2^\frac{\beta}{\alpha+\beta}\| (-\Delta)^{\beta/2}f\|_2^\frac{\alpha}{\alpha+\beta}.  相似文献   

11.
Let L p , 1 ≤ p< ∞, be the space of 2π-periodic functions f with the norm || f ||p = ( ò - pp | f |p )1 \mathord
/ \vphantom 1 p p {\left\| f \right\|_p} = {\left( {\int\limits_{ - \pi }^\pi {{{\left| f \right|}^p}} } \right)^{{1 \mathord{\left/{\vphantom {1 p}} \right.} p}}} , and let C = L be the space of continuous 2π-periodic functions with the norm || f || = || f || = maxe ? \mathbbR | f(x) | {\left\| f \right\|_\infty } = \left\| f \right\| = \mathop {\max }\limits_{e \in \mathbb{R}} \left| {f(x)} \right| . Let CP be the subspace of C with a seminorm P invariant with respect to translation and such that P(f) \leqslant M|| f || P(f) \leqslant M\left\| f \right\| for every fC. By ?k = 0 Ak (f) \sum\limits_{k = 0}^\infty {{A_k}} (f) denote the Fourier series of the function f, and let l = { lk }k = 0 \lambda = \left\{ {{\lambda_k}} \right\}_{k = 0}^\infty be a sequence of real numbers for which ?k = 0 lk Ak(f) \sum\limits_{k = 0}^\infty {{\lambda_k}} {A_k}(f) is the Fourier series of a certain function f λL p . The paper considers questions related to approximating the function f λ by its Fourier sums S n (f λ) on a point set and in the spaces L p and CP. Estimates for || fl - Sn( fl ) ||p {\left\| {{f_\lambda } - {S_n}\left( {{f_\lambda }} \right)} \right\|_p} and P(f λS n (f λ)) are obtained by using the structural characteristics (the best approximations and the moduli of continuity) of the functions f and f λ. As a rule, the essential part of deviation is estimated with the use of the structural characteristics of the function f. Bibliography: 11 titles.  相似文献   

12.
We prove variants of Korn’s inequality involving the deviatoric part of the symmetric gradient of fields u:\mathbbR2 é W? \mathbbR2 u:{\mathbb{R}^2} \supset \Omega \to {\mathbb{R}^2} belonging to Orlicz–Sobolev classes. These inequalities are derived with the help of gradient estimates for the Poisson equation in Orlicz spaces. We apply these Korn type inequalities to variational integrals of the form
òW h( | eD(u) | )dx \int\limits_\Omega {h\left( {\left| {{\varepsilon^D}(u)} \right|} \right)dx}  相似文献   

13.
Let X, X 1, X 2,… be i.i.d. \mathbbRd {\mathbb{R}^d} -valued real random vectors. Assume that E X = 0 and that X has a nondegenerate distribution. Let G be a mean zero Gaussian random vector with the same covariance operator as that of X. We study the distributions of nondegenerate quadratic forms \mathbbQ[ SN ] \mathbb{Q}\left[ {{S_N}} \right] of the normalized sums S N  = N −1/2 (X 1 + ⋯ + X N ) and show that, without any additional conditions,
DN(a) = supx | \textP{ \mathbbQ[ SN - a ] \leqslant x } - \textP{ \mathbbQ[ G - a ] \leqslant x } - Ea(x) | = O( N - 1 ) \Delta_N^{(a)} = \mathop {{\sup }}\limits_x \left| {{\text{P}}\left\{ {\mathbb{Q}\left[ {{S_N} - a} \right] \leqslant x} \right\} - {\text{P}}\left\{ {\mathbb{Q}\left[ {G - a} \right] \leqslant x} \right\} - {E_a}(x)} \right| = \mathcal{O}\left( {{N^{ - 1}}} \right)  相似文献   

14.
Let \mathbb R{\mathbb R} be the set of real numbers, f : \mathbb R ? \mathbb R{f : \mathbb {R} \to \mathbb {R}},  e 3 0{\epsilon \ge 0} and d > 0. We denote by {(x 1, y 1), (x 2, y 2), (x 3, y 3), . . .} a countable dense subset of \mathbb R2{\mathbb {R}^2} and let
$U_d:=\bigcup\nolimits_{j=1}^{\infty} \{(x, y)\in \mathbb {R}^2:\,|x|+|y| > d,\, |x-x_j| < 1,\, |y-y_j| < 2^{-j}\}.$U_d:=\bigcup\nolimits_{j=1}^{\infty} \{(x, y)\in \mathbb {R}^2:\,|x|+|y| > d,\, |x-x_j| < 1,\, |y-y_j| < 2^{-j}\}.  相似文献   

15.
Let X be a normed space and V be a convex subset of X. Let a\colon \mathbbR+ ? \mathbbR+{\alpha \colon \mathbb{R}_+ \to \mathbb{R}_+}. A function f \colon V ? \mathbbR{f \colon V \to \mathbb{R}} is called α-midconvex if
f (\fracx + y2)-\fracf(x) + f(y)2 £ a(||x - y||)    for  x, y ? V.f \left(\frac{x + y}{2}\right)-\frac{f(x) + f(y)}{2}\leq \alpha(\|x - y\|)\quad {\rm for} \, x, y \in V.  相似文献   

16.
We consider the model of atmosphere dynamics and prove the uniqueness of a solution in a bounded domain W ì \mathbbR3 \Omega \subset {\mathbb{R}^3} in the space V(Q) of weak solutions equipped with the finite norm
|| f ||V(Q)2 = \textvrai  supt ? [ 0,T ] || f ||L2( W)2 + || ?3f ||L2(Q)2. \left\| f \right\|_{V(Q)}^2 = \mathop {{\text{vrai}}\,{ \sup }}\limits_{t \in \left[ {0,T} \right]} \left\| f \right\|_{{L_2}\left( \Omega \right)}^2 + \left\| {{\nabla_3}f} \right\|_{{L_2}(Q)}^2.  相似文献   

17.
We find some optimal estimates for the first eigenfunction of a class of elliptic equations whose prototype is - ( guxi )xi = lgu \textin W ì \mathbbRn - {\left( {\gamma u_{{x_{i} }} } \right)}_{{x_{i} }} = \lambda \gamma u\,{\text{in}}\,\Omega \subset \mathbb{R}^{n} with Dirichlet boundary condition, where γ is the normalized Gaussian function in \mathbbRn \mathbb{R}^{n} . To this aim we make use of the Gaussian symmetrization which transforms a domain into an half-space with the same Gaussian measure. The main tools we use are the properties of the weighted rearrangements and in particular the isoperimetric inequality with respect to Gaussian measure.  相似文献   

18.
Let Ω i and Ω o be two bounded open subsets of \mathbbRn{{\mathbb{R}}^{n}} containing 0. Let G i be a (nonlinear) map from ?Wi×\mathbbRn{\partial\Omega^{i}\times {\mathbb{R}}^{n}} to \mathbbRn{{\mathbb{R}}^{n}} . Let a o be a map from ∂Ω o to the set Mn(\mathbbR){M_{n}({\mathbb{R}})} of n × n matrices with real entries. Let g be a function from ∂Ω o to \mathbbRn{{\mathbb{R}}^{n}} . Let γ be a positive valued function defined on a right neighborhood of 0 in the real line. Let T be a map from ]1-(2/n),+¥[×Mn(\mathbbR){]1-(2/n),+\infty[\times M_{n}({\mathbb{R}})} to Mn(\mathbbR){M_{n}({\mathbb{R}})} . Then we consider the problem
$\left\{ {ll} {{\rm div}}\, (T(\omega,Du))=0 &\quad {{\rm in}} \;\Omega^{o} \setminus\epsilon{{\rm cl}} \Omega^{i},\\ -T(\omega,Du(x))\nu_{\epsilon\Omega^{i}}(x)=\frac{1}{\gamma(\epsilon)}G^{i}({x}/{\epsilon}, \gamma(\epsilon)\epsilon^{-1} ({\rm log} \, \epsilon)^{-\delta_{2,n}} u(x)) & \quad \forall x \in \epsilon\partial\Omega^{i},\\ T(\omega, Du(x)) \nu^{o}(x)=a^{o}(x)u(x)+g(x) & \quad \forall x \in \partial \Omega^{o}, \right.$\left\{ \begin{array}{ll} {{\rm div}}\, (T(\omega,Du))=0 &\quad {{\rm in}} \;\Omega^{o} \setminus\epsilon{{\rm cl}} \Omega^{i},\\ -T(\omega,Du(x))\nu_{\epsilon\Omega^{i}}(x)=\frac{1}{\gamma(\epsilon)}G^{i}({x}/{\epsilon}, \gamma(\epsilon)\epsilon^{-1} ({\rm log} \, \epsilon)^{-\delta_{2,n}} u(x)) & \quad \forall x \in \epsilon\partial\Omega^{i},\\ T(\omega, Du(x)) \nu^{o}(x)=a^{o}(x)u(x)+g(x) & \quad \forall x \in \partial \Omega^{o}, \end{array} \right.  相似文献   

19.
We consider the Cauchy problem for the nonlinear Schrödinger equations $ \begin{array}{l} iu_t + \triangle u \pm |u|^{p-1}u =0, \qquad x \in \mathbb{R}^d, \quad t \in \mathbb{R} \\ u(x,0)= u_0(x), \qquad x \in \mathbb{R}^d \end{array} $ for 1 < p < 1 + 4/d and prove that there is a ${\rho (p ,d) \in (1,2)}We consider the Cauchy problem for the nonlinear Schr?dinger equations
l iut + \triangle u ±|u|p-1u = 0,        x ? \mathbbRd,     t ? \mathbbR u(x,0) = u0(x),        x ? \mathbbRd \begin{array}{l} iu_t + \triangle u \pm |u|^{p-1}u =0, \qquad x \in \mathbb{R}^d, \quad t \in \mathbb{R} \\ u(x,0)= u_0(x), \qquad x \in \mathbb{R}^d \end{array}  相似文献   

20.
In this paper, we mainly study polynomial generalized Vekua-type equation _boxclose)w=0{p(\mathcal{D})w=0} and polynomial generalized Bers–Vekua equation p(D)w=0{p(\mathcal{\underline{D}})w=0} defined in W ì \mathbbRn+1{\Omega\subset\mathbb{R}^{n+1}} where D{\mathcal{D}} and D{\mathcal{\underline{D}}} mean generalized Vekua-type operator and generalized Bers–Vekua operator, respectively. Using Clifford algebra, we obtain the Fischer-type decomposition theorems for the solutions to these equations including (D-l)kw=0,(D-l)kw=0(k ? \mathbbN){\left(\mathcal{D}-\lambda\right)^{k}w=0,\left(\mathcal {\underline{D}}-\lambda\right)^{k}w=0\left(k\in\mathbb{N}\right)} with complex parameter λ as special cases, which derive the Almansi-type decomposition theorems for iterated generalized Bers–Vekua equation and polynomial generalized Cauchy–Riemann equation defined in W ì \mathbbRn+1{\Omega\subset\mathbb{R}^{n+1}}. Making use of the decomposition theorems we give the solutions to polynomial generalized Bers–Vekua equation defined in W ì \mathbbRn+1{\Omega\subset\mathbb{R}^{n+1}} under some conditions. Furthermore we discuss inhomogeneous polynomial generalized Bers–Vekua equation p(D)w=v{p(\mathcal{\underline{D}})w=v} defined in W ì \mathbbRn+1{\Omega\subset\mathbb{R}^{n+1}}, and develop the structure of the solutions to inhomogeneous polynomial generalized Bers–Vekua equation p(D)w=v{p(\mathcal{\underline{D}})w=v} defined in W ì \mathbbRn+1{\Omega\subset\mathbb{R}^{n+1}}.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号