首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of poly(N‐isopropylacrylamide‐coN‐hydroxymethylacrylamide) P(NIPAM‐co‐NHMA) copolymers were firstly synthesized via free radical polymerization. Then, the hydrophobic, photosensitive 2‐diazo‐1,2‐naphthoquinone (DNQ) molecules were partially and randomly grafted onto P(NIPAM‐co‐NHMA) backbone through esterification to obtain a triple‐stimuli (photo/pH/thermo) responsive copolymers of P(NIPAM‐co‐NHMA‐co‐DNQMA). UV‐vis spectra showed that the lower critical solution temperature (LCST) of P(NIPAM‐co‐NHMA) ascended with increasing hydrophilic comonomer NHMA molar fraction and can be tailored by pH variation as well. The LCST of the P(NIPAM‐co‐NHMA) went down firstly after DNQ modification and subsequently shifted to higher value after UV irradiation. Meanwhile, the phase transition profile of P(NIPAM‐co‐NHMA‐co‐DNQMA) could be triggered by pH and UV light as expected. Thus, a triple‐stimuli responsive copolymer whose solution properties could be, respectively, modulated by temperature, light, and pH, has been achieved. These stimuli‐responsive properties should be very important for controlled release delivery system. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2763–2773, 2009  相似文献   

2.
By in situ reduction of Ag+ ions pre‐dispersed inside thermosensitive microspheres of poly[(N‐isopropylacrylamide)‐co‐(methacrylic acid)] (P(NIPAM‐co‐MAA)), a 3D copolymer‐supported network of silver nanoparticles is created and extensively characterized by surface‐enhanced Raman scattering (SERS). The effective dispersion and the suitable density of the silver nanoparticles in the composite microspheres are demonstrated by the thermal‐induced SERS signal and its high reproducibility during thermocycling. When the temperature of the system increases above 32 °C, spatial separation of the silver nanoparticles decreases and the numbers of Ag nanoparticles and P(NIPAM‐co‐MAA) microspheres under illumination spot increase as a result of the shrinkage of the P(NIPAM‐co‐MAA) chains, leading to the ramp of the SERS effect. By means of the high reversibility of the thermosensitive phase transition of the P(NIPAM‐co‐MAA) microspheres, SERS activity of the silver nanoparticle network embedded in the microsphere can be well controlled by thermal‐induced variation of special separation.

  相似文献   


3.
A thermally sensitive copolymer, poly(N‐isopropylacrylamide‐co‐styrene) [P(NIPAM‐co‐St)] (Mn?9.5×105 g/mol and Mw/Mn?1.51) was synthesized by soap‐free emulsion polymerization. The phase separation of the copolymer in water was investigated by Rayleigh scattering (RS) technique. The RS spectra revealed the transition of molecular conformation and the aggregation of molecular chains in the course of phase separation. The coil‐to‐globule and globule‐to‐coil transitions of P(NIPAM‐co‐St) chains were found in one heating‐and‐cooling cycle. By means of Avrami formula, apparent activation energy of phase separation of P(NIPAM‐co‐St) aqueous solutions was estimated. Moreover, a model was proposed to describe the phase separation process.  相似文献   

4.
Organic/inorganic hybrid amphiphilic block copolymer poly(methacrylate isobutyl POSS)‐b‐poly(N‐isopropylacrylamide‐co‐oligo(ethylene glycol) methyl ether methacrylate) (PMAPOSS‐b‐P(NIPAM‐co‐OEGMA)) was synthesized via reversible addition–fragmentation chain transfer polymerization. The self‐assembly behavior of this block copolymer in aqueous solution was investigated by dynamic light scattering (DLS) and transmission electron microscopy. The results indicate that the novel block copolymer can self‐assemble into spherical micelles with PMAPOSS segment as the hydrophobic part and P(NIPAM‐co‐OEGMA) segment as the hydrophilic part. The temperature‐responsive characteristics of the assemblies were tested by UV–Vis spectra and DLS. Some factors such as the concentration, molecular weight, and copolymer generation that may affect the cloud point were studied systematically. The results reveal that this copolymer exhibits a sharp and intensive lower critical solution temperature (LCST). The essentially predetermined LCST can be conveniently achieved by adjusting the content of NIPAM or OEGMA domain. In addition, these novel hybrid micelles can undergo an association/disassociation cycle with the heating and cooling of solution and the degree of reversibility displaying a tremendous concentration dependence, as a novel organic/inorganic hybrid material with distinctive virtues can be potentially used in biological and medical fields, especially in drug nanocarriers for targeted therapy. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
Frontal polymerization (FP) is applied for the synthesis of β‐cyclodextrin/poly(vinylimidazole‐co‐N‐vinylcaprolactam‐co‐acrylic acid) (β‐CD/P(VI‐co‐NVCL‐co‐AA)) copolymers. The dependence of frontal velocity and temperature on the initiator and cross‐linker are discussed. The synthesized copolymers have been characterized by Fourier transform infrared (FTIR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). The thermo‐pH dual‐stimuli responsive behavior of the hydrogel is determined by swelling measurement at different temperatures and pH values. Besides, the hydrogels show intrinsic self‐healing behavior and their healing efficiency is determined by the mechanical tests. Interestingly, we integrate FP with microfluidic technology, which may realize the execution of FP under continuous condition. Such simple microfluidics‐FP integrated approach has both methodological and practical value for the synthesis of functional materials. This paper mainly presents the synthesis and characterization of β‐cyclodextrin/poly(vinylimidazole‐co‐N‐vinylcaprolactam‐co‐acrylic acid) (β‐CD/P(VI‐co‐NVCL‐co‐AA)) copolymers by using thermal frontal polymerization (TFP). Hydrogels were found to be self‐healing with good mechanical performance and show dual thermo‐pH responsive behavior. Low‐cost, energy‐saving and efficient method of thermal frontal polymerization process was integrated with microfluidics technology to prepare supraball hydrogel. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1412–1423  相似文献   

6.
A new type of glucose‐responsive hydrogel with rapid response to blood glucose concentration change at physiological temperature has been successfully developed. The polymeric hydrogel contains phenylboronic acid (PBA) groups as glucose sensors and thermo‐responsive poly (N‐isopropylacrylamide) (PNIPAM) groups as actuators. The response rate of the hydrogel to environmental glucose concentration change was significantly enhanced by introducing grafted poly(N‐isopropylacrylamide‐co‐3‐acrylamidophenylboronic acid) [poly(NIPAM‐co‐AAPBA)] side chains onto crosslinked poly(NIPAM‐co‐AAPBA) networks for the first time. The synthesized comb‐type grafted poly(NIPAM‐co‐AAPBA) hydrogels showed satisfactory equilibrium glucose‐responsive properties, and exhibited much faster response rate to glucose concentration change than normal type crosslinked poly(NIPAM‐co‐AAPBA) hydrogels at physiological temperature. Such glucose‐responsive hydrogels with rapid response rate are highly attractive in the fields of developing glucose‐responsive sensors and self‐regulated drug delivery systems. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
Double hydrophilic diblock copolymer, poly(N,N‐dimethylacrylamide)‐b‐poly(N‐isopropylacrylamide‐co‐3‐azidopropylacrylamide) (PDMA‐b‐P(NIPAM‐co‐AzPAM), containing azide moieties in one of the blocks was synthesized via consecutive reversible addition‐fragmentation chain transfer polymerization. The obtained diblock copolymer molecularly dissolves in aqueous solution at room temperature, and can further supramolecularly self‐assemble into core‐shell nanoparticles consisting of thermoresponsive P(NIPAM‐co‐AzPAM) cores and water‐soluble PDMA coronas above the lower critical solution temperature of P(NIPAM‐co‐AzPAM) block. As the micelle cores contain reactive azide residues, core crosslinking can be facilely achieved upon addition of difunctional propargyl ether via click chemistry. In an alternate approach in which the PDMA‐b‐P(NIPAM‐co‐AzPAM) diblock copolymer was dissolved in a common organic solvent (DMF), the core‐crosslinked (CCL) micelles can be fabricated via “click” crosslinking upon addition of propargyl ether and subsequent dialysis against water. CCL micelles prepared by the latter approach typically possess larger sizes and broader size distributions, compared with that obtained by the former one. In both cases, the obtained (CCL) micelles possess thermoresponsive cores, and the swelling/shrinking of which can be finely tuned with temperature, rendering them as excellent candidates as intelligent drug nanocarriers. Because of the high efficiency and quite mild conditions of click reactions, we expect that this strategy can be generalized for the structural fixation of other self‐assembled nanostructures. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 860–871, 2008  相似文献   

8.
A series of novel pH‐ and temperature‐responsive diblock copolymers composed of poly(N‐isopropylacrylamide) (PNIPAM) and poly[(L ‐glutamic acid)‐co‐(γ‐benzyl L ‐glutamate)] [P(GA‐co‐BLG)] were prepared. The influence of hydrophobic benzyl groups on the phase transition of the copolymers was studied for the first time. With increasing BLG content in P(GA‐co‐BLG) block, the thermal phase transition of the diblock copolymer became sharper at a designated pH and the critical curve of phase diagram of the diblock copolymer shifted to a higher pH region. Notably, when the BLG content in P(GA‐co‐BLG) block was more than 30 mol.‐%, the diblock copolymer responded sharply to a narrow pH change in the region of pH 7.4–5.5.

  相似文献   


9.
The hairy poly(methacrylic acid‐co‐divinylbenzene)‐g‐poly(N‐isopropylacrylamide) (P(MAA‐co‐DVB)‐g‐PNIPAm) nanocapsules with pH‐responsive P(MAA‐co‐DVB) inner shell and temperature‐responsive PNIPAm brushes were prepared by combined distillation–precipitation copolymerization and surface thiol‐ene click grafting reaction using 3‐(trimethoxysilyl)propyl methacrylate‐modified silica (SiO2‐MPS) nanospheres as a sacrificial core material. The well‐defined PNIPAm was synthesized by a reversible addition fragmentation chain transfer (RAFT) polymerization. The chain end was converted to a thiol by chemical reduction. The PNIPAm was integrated into the nanocapsules via thiol‐ene click reaction. The surface thiol‐ene click reaction conduced to tunable grafting density of PNIPAm brushes. The grafting densities decreased from 0.70 chains nm?2 to 0.15 chains nm?2 with increasing the molecular weight of grafted PNIPAm chains. Using water soluble doxorubicin hydrochloride (DOX·HCl) as a model molecular, the tunable shell permeability of the nanocapsule was investigated in detail. The permeability constant can be tuned by controlling the thickness of the P(MAA‐co‐DVB) inner shell, the grafting density of PNIPAm brushes, and the environmental pH and temperature. The tunable shell permeability of these nanocapsules results in the release of the loaded guest molecules with manipulable releasing kinetics. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2202–2216  相似文献   

10.
Novel pH and reduction dual‐sensitive biodegradable polymeric micelles for efficient intracellular delivery of anticancer drugs were prepared based on a block copolymer of methyloxy‐poly(ethylene glycol)‐b‐poly[(benzyl‐l ‐aspartate)‐co‐(N‐(3‐aminopropyl) imidazole‐l ‐aspartamide)] [mPEG‐SS‐P(BLA‐co‐APILA), MPBA] synthesized by a combination of ring‐opening polymerization and side‐chain reaction. The pH/reduction‐responsive behavior of MPBA was observed by both dynamic light scattering and UV–vis experiments. The polymeric micelles and DOX‐loaded micelles could be prepared simply by adjusting the pH of the polymer solution without the use of any organic solvents. The drug release study indicated that the DOX‐loaded micelles showed retarded drug release in phosphate‐buffered saline at pH 7.4 and a rapid release after exposure to weakly acidic or reductive environment. The empty micelles were nontoxic and the DOX‐loaded micelles displayed obvious anticancer activity similar to free DOX against HeLa cells. Confocal microscopy observation demonstrated that the DOX‐loaded MPBA micelles can be quickly internalized into the cells, and effectively deliver the drugs into nuclei. Thus, the pH and reduction dual‐responsive MPBA polymeric micelles are an attractive platform to achieve the fast intracellular release of anticancer drugs. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1771–1780  相似文献   

11.
Although biodegradable amphiphilic block copolymer micelles have been widely applied in the clinical applications as drug delivery nanocarriers, low‐efficiency cellular internalization frequently reduces therapeutic efficacy of the loaded drugs. Here, photothermal effect‐promoted cellular internalization of finely tuned thermo‐responsive amphiphilic biodegradable block copolymer nanocarriers via noninvasive stimuli of near‐infrared (NIR) light irradiation is demonstrated. Amphiphilic block copolymers, poly(ε‐caprolactone)‐block‐poly(N‐isopropylacrylamide‐coN,N‐dimethylacrylamide) (PCL‐b‐P(NIPAM‐co‐DMA)), are prepared with finely tuned compositions of P(NIPAM‐co‐DMA) for desirable lower critical solution temperature of the block copolymer micelles in aqueous solution. The block copolymers are then used to co‐encapsulate doxorubicin and indocyanine green, which show high encapsulation efficiency and significant photothermal effect upon exposure to NIR light irradiation. The photothermal effect‐induced collapse and hydrophilic‐to‐hydrophobic transition of P(NIPAM‐co‐DMA) shells significantly enhance the interactions between drug‐loaded micelles and cell membranes, which dramatically promote the cellular internalization of the micelles and therapeutic efficacy of loaded anticancer drugs.

  相似文献   


12.
Providing catechol‐end functionality to controlled structure lower critical solution temperature (LCST) copolymers is attractive, given the versatility of catechol chemistry for tethering to nanostructures. Controlled polymer chain lengths with catechol RAFT end groups are of interest to provide tunable LCST behavior to nanoparticles, although these polymerizations are relatively unexplored. Herein, the reactivity ratios for the RAFT copolymerization of N,N‐dimethylacrylamide (DMAm) and N‐isopropylacrylamide (NIPAM) pairs based on catechol‐end RAFT agents using an in situ NMR technique were first determined. Several catechol‐end poly(DMAm‐co‐NIPAM) samples were then prepared using the RAFT agent to provide copolymer. The reactivity ratios for the DMAm‐NIPAM pair were rDMAm = 1.28–1.31 and rNIPAM = 0.48–0.51. All the poly(DMAm‐co‐NIPAM) samples were found to have Mn values ≤ 26 kDa and Ð < 1.08 with LCST values ranging from 31 to 92°C, while maintaining a short range of glass transition temperature (Tg = 118–137°C). The difference in LCST values for the catechol functionalized poly(DMAm‐co‐NIPAM) based on 0.5 wt% aqueous buffered solutions at pH 5.5 and 8.5 was found to be <3.0°C. These conditions are suitable for subsequent catechol‐induced coordination and nucleophilic addition chemistry for covalent and noncovalent linkages during subsequent post‐modification. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 4062–4070  相似文献   

13.
Multistimuli‐responsive precise morphological control over self‐assembled polymers is of great importance for applications in nanoscience as drug delivery system. A novel pH, photoresponsive, and cyclodextrin‐responsive block copolymer were developed to investigate the reversible morphological transition from micelles to vesicles. The azobenzene‐containing block copolymer poly(ethylene oxide)‐b‐poly(2‐(diethylamino)ethyl methacrylate‐co‐6‐(4‐phenylazo phenoxy)hexyl methacrylate) [PEO‐b‐P(DEAEMA‐co‐PPHMA)] was synthesized by atom transfer radical polymerization. This system can self‐assemble into vesicles in aqueous solution at pH 8. On adjusting the solution pH to 3, there was a transition from vesicles to micelles. The same behavior, that is, transition from vesicles to micelles was also realizable on addition of β‐cyclodextrin (β‐CD) to the PEO‐b‐P(DEAEMA‐co‐PPHMA) solution at pH 8. Furthermore, after β‐CD was added, alternating irradiation of the solution with UV and visible light can also induce the reversible micelle‐to‐vesicle transition because of the photoinduced trans‐to‐cis isomerization of azobenzene units. The multistimuli‐responsive precise morphological changes were studied by laser light scattering, transmission electron microscopy, and UV–vis spectra. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

14.
Fluorescent polymersomes with both aggregation‐induced emission (AIE) and CO2‐responsive properties were developed from amphiphilic block copolymer PEG‐b‐P(DEAEMA‐co‐TPEMA) in which the hydrophobic block was a copolymer made of tetraphenylethene functionalized methacrylate (TPEMA) and 2‐(diethylamino)ethyl methacrylate (DEAEMA) with unspecified sequence arrangement. Four block copolymers with different DEAEMA/TPEMA and hydrophilic/hydrophobic ratios were synthesized, and bright AIE polymersomes were prepared by nanoprecipitation in THF/water and dioxane/water systems. Polymersomes of PEG45b‐P(DEAEMA36co‐TPEMA6) were chosen to study the CO2‐responsive property. Upon CO2 bubbling vesicles transformed to small spherical micelles, and upon Ar bubbling micelles returned to vesicles with the presence of a few intermediate morphologies. These polymersomes might have promising applications as sensors, nanoreactors, or controlled release systems.  相似文献   

15.
Poly(di(pyridin‐2‐yl)methyl acrylate) (PDPyMA), which was obtained by the free radical polymerization of designed coordinative monomer of di(pyridin‐2‐yl)methyl acrylate, is able to coordinate with various metal ions to form heterogeneous catalysts for diverse catalytic reactions. The Pd and Cu complexes supported by PDPyMA were developed for the heterogeneous Suzuki‐Miyaura reaction and Friedel‐Crafts alkylation, respectively. The PDPyMA‐based catalysts showed no significant decline of reactivity after five times recycling. However, the hydrolysis of the PDPyMA backbone under alkaline conditions limited the catalytic efficiency of this heterogeneous catalyst so that the coordinative monomer was redesigned as 1,1‐di(pyridine‐2‐yl)‐2‐(4‐vinylphenyl)ethan‐1‐ol and then 2,2′‐(1‐methoxy‐2‐(4‐vinylphenyl)ethane‐1,1‐diyl)dipyridine (MVPhDPy). With copolymerization of N‐isopropyl acrylamide (NIPAM), the efficiency of polymer‐based heterogeneous catalysts could be further raised, demonstrated by the increased turn over number in the Suzuki‐Miyaura reaction, which approached 5,260 by using the catalyst formed from poly(MVPhDPy‐co‐NIPAM) and Pd(OAc)2. poly(MVPhDPy‐co‐NIPAM) copolymer, therefore, could be a versatile platform to support different metal ions for various heterogeneous catalytic reactions.  相似文献   

16.
Hollow mesoporous silica nanoparticles (HMSNs) grafted with a photo‐responsive copolymer containing coumarin groups were successfully prepared. With uniform polystyrene nanoparticles and cetyltrimethylammonium bromide correspondingly as the template of core and channel, HMSNs were made from tetraethyloxysilane in alkalic condition. Epoxy groups were introduced onto the outer surface of HMSNs with γ‐(2,3‐epoxypropoxy)propyltrimethoxysilane and converted into azido groups with sodium azide, resulting in azido‐functionalized HMSNs (azido‐HMSNs). Meanwhile, single‐electron transfer‐living radical copolymerization of methyl methacrylate (MMA) and 7‐(2‐methacryloyloxy)‐4‐methylcoumarin (CMA) with propargyl 2‐bromoisobutyrate as the initiator produced alkynyl‐capped P(MMA‐co‐CMA) [alkynyl‐P(MMA‐co‐CMA)]. Finally, photo‐responsive HMSNs grafted with P(MMA‐co‐CMA) [HMSN‐g‐P(MMA‐co‐CMA)] was achieved through the click reaction between azido‐HMSNs and alkynyl‐P(MMA‐co‐CMA). Different techniques such as transmission electron microscopy, Fourier transform infrared spectroscopy, and thermal gravimetric analysis confirmed the successful preparation of the resultant hybrid nanoparticles and their intermediates. Because of its hollow core, mesoporous shell channels and light responsiveness, the coumarin‐modified HMSNs would be an interesting nano‐vehicle for guest molecules. Thus, the loading and release of pyrene with HMSN‐g‐P(MMA‐co‐CMA) was studied. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 3791–3799  相似文献   

17.
In this work, a novel type of block copolymer micelles with K+‐responsive characteristics for targeted intracellular drug delivery is developed. The proposed smart micelles are prepared by self‐assembly of poly(ethylene glycol)‐b‐poly(N‐isopropylacry‐lamide‐co‐benzo‐18‐crown‐6‐acrylamide) (PEG‐b‐P(NIPAM‐co‐B18C6Am)) block copolymers. Prednisolone acetate (PA) is successfully loaded into the micelles as the model drug, with loading content of 4.7 wt%. The PA‐loaded micelles display a significantly boosted drug release in simulated intracellular fluid with a high K+ concentration of 150 × 10−3m , as compared with that in simulated extracellular fluid. Moreover, the in vitro cell experiments indicate that the fluorescent molecules encapsulated in the micelles can be delivered and specifically released inside the HSC‐T6 and HepG2 cells responding to the increase of K+ concentration in intracellular compartments, which confirms the successful endocytosis and efficient K+‐induced intracellular release. Such K+‐responsive block copolymer micelles are highly potential as new‐generation of smart nanocarriers for targeted intracellular delivery of drugs.  相似文献   

18.
A series of gradient and block copolymers, based on 2‐(2‐methoxyethoxy)ethyl methacrylate (MEO2MA) and tert‐butyl acrylate (tBA), were synthesized by atom transfer radical polymerization (ATRP) in a first step. The MEO2MA monomer leads to the production of thermosensitive polymers, exhibiting lower critical solution temperature (LCST) at around room temperature, which could be adjusted by changing the proportion of tBA in the copolymer. In a second step, the tert‐butyl groups of tBA were hydrolyzed with trifluoroacetic acid to form the corresponding block and gradient copolymers of MEO2MA and acrylic acid (AA), which exhibited both temperature and pH‐responsive behavior. These copolymers showed LCST values strongly dependent on the pH. At acid pH, a slightly decrease of LCST with an increase of AA in the copolymer was observed. However, at neutral or basic conditions, ionization of acid groups increases the hydrophilic balance considerably raising the LCST values, which even become not observable over the temperature range under study. In the last step, these carboxylic functionalized copolymers were covalently bound to biocompatible and biodegradable films of poly(3‐hydroxybutyrate‐co‐3‐hydroxyhexanoate) [P(HB‐co‐HHx)] obtained by casting and, previously treated with ethylenediamine (ED) to render their surfaces with amino groups. Thereby, thermosensitive surfaces of modified P(HB‐co‐HHx) could be obtained. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

19.
A novel nanofibrous mat featuring an ultraviolet (UV)‐induced CO2‐responsive behavior was fabricated via electrospinning and used as a controlled drug release system. First, a random copolymer for electrospinning, poly(N,N‐diethylaminoethyl acrylamide‐coN‐benzylacrylamide‐coN,N‐dimethyl‐N‐(2‐nitrobenzyl)‐ethaneamine acrylamide‐co‐4‐acryloyloxy benzophenone) [P(DEEA‐co‐BA‐co‐DMNOBA‐co‐ABP)], was prepared based on pentafluorophenyl esters via an “active ester‐amine” chemistry reaction. Subsequently, doxorubicin hydrochloride (DOX)‐loaded P(DEEA‐co‐BA‐co‐DMNOBA‐co‐ABP) nanofibers were fabricated, yielding a new drug‐loaded nanofibrous mat as a potential wound dressing. These DOX‐loaded nanofibers can respond to UV irradiation and CO2 stimulation. Interestingly, without UV irradiation, the fabricated nanofibers cannot exhibit any responsiveness. Therefore, the majority of the DOX was steadily stored in the nanofibers, even in the presence of CO2. However, upon UV irradiation, the CO2‐responsive behavior of the nanofibers was activated and the prepared nanofibers swelled slightly, resulting in the release of around 42% DOX from the nanofibers. Upon further purging with CO2, the release amount of DOX from the nanofibers could reach up to approximately 85%, followed by the morphological transition from a nanofibrous mat to a porous hydrogel film. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1580–1586  相似文献   

20.
Glucose responsive block copolymer featuring boronic acid as a glucose responsive moiety and glycine are reported. The first block is polymerized through reversible addition–fragmentation chain transfer (RAFT) polymerization and the resulting poly(N‐acryloylmorpholine)113 (PAcM) is employed as a macro‐chain transfer agent for chain extension with pentafluorophenyl acrylate (PFPA) yielding a well‐defined PAcM113block‐poly(pentafluorophenyl acrylate)84 (PPFPA). The PPFPA block is then reacted with functional (3‐aminomethyl) phenyl boronic acid and glycine via post‐polymerization modification and the structure of the block copolymer is confirmed by proton nuclear magnetic resonance (NMR), 19F NMR, Fourier transform infrared, and gel permeation chromatography. By copolymerizing glycine into the polymer backbone, the relative pKa of the block copolymer is significantly lowered. The block copolymer can self‐assemble into core–shell micelles in aqueous solution and disassemble in response to glucose at the physiological pH. Furthermore, the encapsulation and release of Nile red (NR) as a hydrophobic model drug is studied under the physiological pH. The influence of the glucose concentration on the NR release from the polymeric micelles is demonstrated. These results suggested that the glucose‐responsive poly[(AcM)113b‐(3‐(aminomethyl)phenylboronic acid hydrochloride(‐co‐Gly)84] block copolymer has potential applications as a glucose‐responsive polymer for insulin delivery. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 422–431  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号