首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A helical step‐ladder polyarylene incorporating chiral (R)‐2,2′‐dioctoxy‐1,1′‐binaphthyl units was synthesized for the first time. The first step involved the preparation of a precursor poly(arylene ketone) via a palladium‐mediated Suzuki‐type cross‐coupling reaction with the aid of microwave heating. Two polymer‐analog reaction steps, the reduction of the keto groups to tertiary alcohol functionalities and subsequent intramolecular Friedel–Crafts cyclization, gave a step‐ladder polymer ( 6 ) in good yields with reasonable mean average molecular weights greater than 13,000. The regioselective cyclization pattern in the α position of the naphthalene core was confirmed by a comparison of the NMR data of the polymer with those of the corresponding model ladder oligomers, 12 and 13 , and also a single‐crystal structure of 13 . The optical spectra of the oligomers and polymers indicated that there was little electronic interaction across the binaphthyl units. The circular dichroism spectrum of 6 exhibited a strong bisignate Cotton effect in the π–π* absorption region of the planar chromophores, which reflected the strong exciton coupling within the helical polymer chain. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5533–5545, 2006  相似文献   

2.
The asymmetric total synthesis of farnesin, a rearranged ent‐kaurenoid, was achieved through a convergent approach involving photo‐Nazarov and intramolecular aldol cyclizations to build the syn‐syn‐syn hydrofluorenol ABC ring system and bicyclo[3.2.1]octane CD ring system in the first application of a UV‐light‐induced excited‐state Nazarov cyclization of a non‐aromatic dicyclic divinyl ketone in a total synthesis. Unlike the conventional acid‐promoted ground‐state Nazarov reaction, the excited‐state Nazarov reaction enables stereospecific formation of the highly strained syn‐syn‐syn‐fused hydrofluorenone scaffold through a disrotatory cyclization.  相似文献   

3.
Polydi(3,4‐dihydro‐2H‐pyran‐2‐methyl) esters of oxalic, adipic, and phthalic acids were prepared at different temperatures in the presence of different cationic initiators, namely, the boron trifluoride/diethyl ether complex system, anhydrous ferric chloride, and p‐toluene sulfonic acid. The obtained polymers were hydrolyzed under basic conditions, and the polydispersity indices of these polymers were determined before and after hydrolysis. The results are discussed to shed some light on the ability to use this analysis to investigate the precise structure of the obtained polymers and to predict the ability of these polymers to form ladder or semiladder polymers. Characteristics of such polymers were dependent, to some extent, on the type of crosslinks and the cationic initiators used for polymerization as well as the reaction temperature. It seems possible to optimize the conditions leading to formation of ladder or semiladder polydi(3,4‐dihydro‐2H‐pyran‐2‐methyl) esters of oxalic acid and adipic acid, respectively. The ladder structure was confirmed through determination of the polydispersity index before and after hydrolysis of the polymer formed at different temperatures and through computer‐aided molecular modeling. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3909–3915, 2002  相似文献   

4.
A sequence of two titanium(III)‐catalyzed reductive umpolung reactions is reported that allows the rapid construction of benzazo‐ and benzoxozine building blocks. The first step is a reductive cross‐coupling of quinolones or chromones with Michael acceptors. This reaction proceeds with complete syn‐selectivity for the quinolone functionalization while the anti‐diastereomers are obtained as the major products from chromones. With different reaction conditions, the stereochemical outcome can be altered to afford the syn‐chromanone products as well. A subsequent reductive ketyl radical cyclization forges the tricyclic title compounds in good yields. A stereochemical model explaining the observed stereoselectivities is provided and the product configurations were unambiguously verified by X‐ray analyses and 2D NMR spectroscopic experiments.  相似文献   

5.
A diversity‐oriented method to synthesize (E)‐azastilbenes having an intramolecular B? N coordination bond from alkynyl(triaryl)borates and azaaromatic halides is described. The obtained π‐conjugated compounds exhibit an intense blue fluorescence and a high electron affinity, indicating their potential to be used as n‐type light‐emitting materials.  相似文献   

6.
2,3‐Diaryl substituted maleimides as model compounds of conjugated maleimide polymers [poly(RMI‐alt‐Ar) and poly(RMI‐co‐Ar)] were synthesized from 2,3‐dibromo‐N‐substituted maleimide (DBrRMI) [R= cyclohexyl (DBrCHMI) and n‐hexyl (DBrHMI)] and aryl boronic acid using palladium catalysts. To clarify structures of conjugated polymer containing maleimide units at the main chain, 13C NMR spectra of 2‐aryl or 2,3‐diaryl substituted maleimides were compared with those of N‐substituted maleimide polymers. Copolymers obtained with DBrRMI via Suzuki‐Miyaura cross‐coupling polymerizations or Yamamoto coupling polymerizations were dehalogenated structures at the terminal end. This dehalogenation may contribute to the low polymerizability of DBrRMIs. On the other hand, the π‐conjugated compounds showed high solubility in common organic solvents. The N‐substituents of maleimide cannot significantly affect the photoluminescence spectra of 2,3‐diaryl substituted maleimides derivatives. The fluorescence spectra of poly(RMI‐alt‐Ar) and poly(RMI‐co‐Ar) varied with N‐substituents of the maleimide ring. When exposed to ultraviolet light of wavelength 352 nm, a series of 1,4‐phenylene‐ and/or 2,5‐thienylene‐based copolymers containing N‐substituted maleimide derivatives fluoresced in a yellow to blue color. It was found that photoluminescence emissions and electronic state of π‐conjugated maleimide derivatives were controlled by aryl‐ and N‐substituents, and maleimide sequences of copolymers. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

7.
Efficient violet–blue‐emitting molecules are especially useful for applications in full‐color displays, solid‐state lighting, as well as in two‐photon absorption (TPA) excited frequency‐upconverted violet–blue lasing. However, the reported violet–blue‐emitting molecules generally possess small TPA cross sections. In this work, new 1,8‐diazapyrenes derivatives 3 with blue two‐photon‐excited fluorescence emission were concisely synthesized by the coupling reaction of readily available 1,4‐naphthoquinone O,O‐diacetyl dioxime ( 1 ) with internal alkynes 2 under the [{RhCl2Cp*}2]–Cu(OAc)2 (Cp*=pentamethylcyclopentadienyl ligand) bimetallic catalytic system. Elongation of the π‐conjugated length of 1,8‐diazapyrenes 3 led to the increase of TPA cross sections without the expense of a redshift of the emission wavelength, probably due to the rigid planar structure of chromophores. It is especially noteworthy that 2,3,6,7‐tetra(4‐bromophenyl)‐1,8‐diazapyrene ( 3c ) has a larger TPA cross section than those of other molecules reported so far. These experimental results are explained in terms of the effects of extension of the π‐conjugated system, intramolecular charge transfer, and reduced detuning energy.  相似文献   

8.
Application of the Suzuki cross‐coupling reaction for efficient synthesis of diverse substituted biaryl‐chromen‐4‐ones using an optimized palladium(0) catalyst system is reported. The coupling of arylboronic acids with the resin‐bound bromoflavanones which were prepared by organoselenium‐induced regioselective intramolecular cyclization of bromo‐2‐hydroxylchalcones proceeded smoothly. Biaryl‐chromen‐4‐ones were synthesized by subsequent selenoxide syn‐elimination in good total yields.  相似文献   

9.
A new modification of the Friedel–Crafts type intramolecular cyclization involving O‐protected ortho‐acetal diarylmethanols as a new type of reactant, was carried out for the first time in a medium containing a large amount of water at room temperature and enabled synthesis of a series of electron‐rich, hexahydroxylated 10‐O‐R‐substituted anthracenes, where R is an alkyl (Me, nBu, n‐C16H33) or arylalkyl group (CH2Ph, CH2‐2‐Napht, CH2C6H4CH2OAr) and also evaluation of their electronic and optoelectronic properties in solution, crystal, and solid thin film. In this transformation, a central 10‐O‐R‐substituted benzene ring was formed, fused to rings originating from two independent aromatic aldehydes. The reaction proceeded via two identified mechanisms involving acetal and/or free aldehyde groups. The acid sensitive acetal and dibenzyl alkoxy functions have never been used together in the intramolecular Friedel–Crafts type cyclization. The new compounds revealed deep blue fluorescence and quantum yields in solution around 0.3. The electrical properties investigated for thin films obtained by vacuum deposition on glass were 10‐O‐R‐substituent dependent and showed much faster transient current decay in the case of the 10‐O‐CH2Ph derivative than for the material with a 10‐O‐Me substituent (the lifetime of charge carriers was 25 times shorter in this case). The AFM images of thin films, Stokes shifts, and X‐ray analysis of π‐stacking interactions in crystals of the new materials have been also obtained.  相似文献   

10.
Linear and hyperbranched ladder polymers are facilely synthesized by a Pd0‐catalyzed Suzuki polycondensation and Friedel–Crafts alkylation. The polymers show blue light emission with typical features of ladder polymers, such as well‐resolved absorption and emission spectra, and small Stokes shifts. The polymers contain fewer structural defects and they exhibit good optical and thermal stability. No spectral change is observed after the films of ladder polymers are heated at 110 °C in air for 24 h.  相似文献   

11.
An unusual reactivity of 2‐(1‐alkenyl)‐pyridines towards hydroboration with 9H‐borabicyclo[3.3.1]nonane (9H‐BBN) has been employed to selectively introduce two borane groups into a conjugated quaterpyridine. Quantitative conversion of the substrate was observed with exclusive regioselectivity. A molecular structure that allows intramolecular N→B coordination was generated. The effect of the ladder formation on the molecular structure and the electronic properties of the conjugated system have been investigated. The synthetic strategy demonstrated herein offers a facile access to N→B ladder‐type structures from readily available substrates, and allows to simultaneously introduce several boron centers under mild conditions.  相似文献   

12.
Vilsmeier–Haack‐type cyclization of 1H‐indole‐4‐propanoic acid derivatives was examined as model construction for the A–B–C ring system of lysergic acid ( 1 ). Smooth cyclization from the 4 position of 1H‐indole to the 3 position was achieved by Vilsmeier–Haack reaction in the presence of K2CO3 in MeCN, and the best substrate was found to be the N,N‐dimethylcarboxamide 9 (Table 1). The modified method can be successfully applied to an α‐amino acid derivative protected with an N‐acetyl function, i.e., to 27 (Table 2); however, loss of optical purity was observed in the cyclization when a chiral substrate (S)‐ 27 was used (Scheme 5). On the other hand, the intramolecular Pummerer reaction of the corresponding sulfoxide 20 afforded an S‐containing tricyclic system 22 , which was formed by a cyclization to the 5 position (Scheme 3).  相似文献   

13.
An unconventional nickel‐catalyzed reaction was developed for the synthesis of multifunctionalized benzofurans from alkyne‐tethered phenolic esters. The transformation involves the generation of a nucleophilic vinyl NiII species by the regioselective syn‐aryl nickelation of an alkyne, which then undergoes an intramolecular cyclization with phenol ester to yield highly functionalized 1,1‐disubstituted alkenes with 3‐benzofuranyl and (hetero)aryl substituents. The methodology can be used for the late‐stage benzofuran incorporation of various drug molecules and natural products, such as 2‐propylvaleric acid, gemfibrozil, biotin, and lithocholic acid. Furthermore, this arylative cyclization method was successfully applied for the efficient synthesis of the anti‐arrhythmic drug amiodarone.  相似文献   

14.
基于超支化高分子的生长代数模型,利用Monte Carlo模拟方法研究了不同溶剂条件下自缩合乙烯基聚合(SCVP)体系的环化效应.根据SCVP体系的反应机理给出含环反应的微分动力学方程,并通过环化反应的内在特征确定了分子间反应和内环化反应的速率常数.在此基础上,利用Monte Carlo模拟方法得到了高分子的数量分布函数、重均分子量、环数以及含环分子的链段分数等相关物理量,分析了环化效应对于体系平均物理量的影响.进一步根据模拟结果对单体浓度和溶剂效应等对内环化反应的影响予以分析.结果表明,环化效应取决于单体浓度和溶剂效应之间的协同作用,其中单体浓度在环化反应中起着主导作用.  相似文献   

15.
An efficient multicomponent synthesis of 5‐azaindoles and dihydropyrrolo[3,2‐c]azepines was achieved by zirconocene‐mediated coupling of silicon‐tethered diynes, nitriles, and isocyanides. The synthesis, structures, and intramolecular cyclization of mono‐ and bis(iminoacyl)? Zr intermediates were investigated to elucidate the reaction process. Upon hydrolysis, the isolated mono(iminoacyl)? Zr intermediates underwent intramolecular cyclization to afford tetrasubstituted 5‐azaindoles, whereas intramolecular cyclization of bis(iminoacyl)? Zr intermediates led to the formation of dihydropyrrolo[3,2‐c]azepines. The structure of a bis(iminoacyl)? Zr intermediate, formed through insertion of two molecules of CyNC into the Zr? C bond, and structures of two dihydropyrrolo[3,2‐c]azepines were characterized by single‐crystal X‐ray structural analysis.  相似文献   

16.
A newly designed zinc Lewis acid/base hybrid catalyst was developed. By adjusting the Lewis acidity of the zinc center, aldol‐type additions of 2‐picolylamine Schiff base to aldehydes proceeded smoothly to afford syn‐aldol adduct equivalents, transN,O‐acetal adducts, in high yields with high selectivities. NMR experiments, including microchanneled cell for synthesis monitoring (MICCS) NMR analysis, revealed that anti‐aldol adducts were formed at the initial stage of the reactions under kinetic control, but the final products were the trans‐(syn)‐N,O‐acetal adducts that were produced through a retro‐aldol process under thermodynamic control. In the whole reaction process, the zinc catalyst played three important roles: i) promotion of the aldol process (C?C bond formation), ii) cyclization process to the N,O‐acetal product (C?O bond formation), and iii) retro‐aldol process from the anti‐aldol adduct to the syn‐aldol adduct (C?C bond cleavage and C?C bond formation).  相似文献   

17.
Hyperbranched poly(ether nitrile)s were prepared from a novel AB2 type monomer, 2‐chloro‐4‐(3,5‐dihydroxyphenoxy)benzonitrile, via nucleophilic aromatic substitution. Soluble and low‐viscous hyperbranched polymers with molecular weights upto 233,600 (Mw) were isolated. According to the 1H NMR and GPC data, the unique polymerization behavior was observed, which implies that the weight average molecular weight increased after the number average molecular weight reached plateau region. Model compounds were prepared to characterize the branching structure. Spectroscopic measurements of the model compounds and the resulting polymers, such as 1H, DEPT 13C NMR, and MS, strongly suggest that the ether exchange reaction and cyclization are involved in the propagation reaction. The side reactions would affect the unique polymerization behavior. The resulting polymers showed a good solubility in organic solvents similar to other hyperbranched aromatic polymers. The hydroxy‐terminated polymer was even soluble in basic water. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5835–5844, 2009  相似文献   

18.
Novel ladder‐type conjugated polymers, fused poly (benzopentalene) derivatives, were synthesized from the readily accessible 1,4‐dibromo‐2,5‐diethynylbenzene derivatives by the Pd‐catalyzed self‐polycondensation in one‐step with high yields. The low solubility of the ladder structure was suggested when the triisopropylsilyl substituents were selected. However, when longer alkyl chains were introduced into the peripheral moieties, such as the dialkylanilino (DAA) and alkyloxyphenyl groups, a high solubility was achieved and the number‐average molecular weight (Mn) reached 18,000. The UV‐Vis absorption spectral shapes of the polymers were similar to the reported dibenzopentalene derivatives, except for the bathochromically shifted end absorptions. This result suggests an extension of the π‐conjugated systems due to the polymerization. Moreover, the almost defect‐free structure of the ladder‐type polymers was confirmed by the quantitative tetracyanoethylene (TCNE) addition to the DAA‐activated alkynes. The titration experiments of TCNE to the polymers revealed the number of terminal alkynes, which enabled us to calculate the molecular weight of the polymers. The calculated molecular weight was consistent with that determined by GPC. After the TCNE addition, the polymer band gaps reasonably decreased as suggested by the UV‐Vis‐NIR absorption and electrochemical measurements. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

19.
The reaction of 4,4′‐bipyridine with copper acetate in the presence of 4‐nitrophenol led to the formation of the title compound, {[Cu(CH3COO)2(C10H8N2)]·C6H5NO3·2H2O}n. The complex forms a double‐stranded ladder‐like coordination polymer extending along the b axis. The double‐stranded polymers are separated by 4‐nitrophenol and water solvent molecules. The two CuII centres of the centrosymmetric Cu2O2 ladder rungs have square‐pyramidal coordination environments, which are formed by two acetate O atoms and two 4,4′‐bipyridine N atoms in the basal plane and another acetate O atom at the apex. The ladder‐like double strands are separated from each other by one unit‐cell length along the c axis, and are connected by the water and 4‐nitrophenol molecules through a series of O—H...O and C—H...O hydrogen‐bonding interactions and two unique intermolecular π–π interactions.  相似文献   

20.
Donor–acceptor (D–A) conjugated polymers bearing non‐covalent configurationally locked backbones have a high potential to be good photovoltaic materials. Since 1,4‐dithienyl‐2,5‐dialkoxybenzene ( TBT ) is a typical moiety possessing intramolecular S…O interactions and thus a restricted planar configuration, it was used in this work as an electron‐donating unit to combine with the following electron‐accepting units: 3‐fluorothieno[3,4‐b]thiophene ( TFT ), thieno‐[3,4‐c]pyrrole‐4,6‐dione ( TPD ), and diketopyrrolopyrrole ( DPP ) for the construction of such D–A conjugated polymers. Therefore, the so‐designed three polymers, PTBTTFT , PTBTTPD , and PTBTDPP , were synthesized and investigated on their basic optoelectronic properties in detail. Moreover, using [6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM) as acceptor material, polymer solar cells (PSCs) were fabricated for studying photovoltaic performances of these polymers. It was found that the optimized PTBTTPD cell gave the best performance with a power conversion efficiency (PCE) of 4.49%, while that of PTBTTFT displayed the poorest one (PCE = 1.96%). The good photovoltaic behaviors of PTBTTPD come from its lowest‐lying energy level of the highest occupied molecular orbital (HOMO) among the three polymers, and good hole mobility and favorable morphology for its PC71BM‐blended film. Although PTBTDPP displayed the widest absorption spectrum, the largest hole mobility, and regular chain packing structure when blended with PC71BM, its unmatched HOMO energy level and disfavored blend film morphology finally limited its solar cell performance to a moderate level (PCE: 3.91%). © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 689–698  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号