首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Restrained molecular dynamics simulations were performed to study the binding affinity of the peptide with alkanethiols of different tail-groups, S(CH2)7CH3, S(CH2)7OH and S(CH2)7COOH, which self-assembled on Au(111) surface in the presence of water molecules. The curves of binding affinity were calculated by fixing the center of mass of the peptide at various distances from the assembling surface. Simulation results show that the binding affin- ity is in the order as COOH-SAMs〉OH-SAMs〉CH3-SAMs, while 100% COOH-SAMs〉5% COOH-SAMS in concentration. The effects on binding affinity by different tail-groups were also studied. Results show that the binding affinity between COOH-SAMs and the peptide is bigger than those of the others and increasing the acidity of COOH-SAMs will result in stronger attractive power.  相似文献   

2.
We describe the synthesis, characterization, and select properties of a novel polyurethane (PU) prepared using a new polyisobutylene diol, HO‐CH2CH2‐S‐PIB‐S‐CH2CH2‐OH, soft segment and conventional hard segments. The diol is synthesized by terminal functionalization of ally‐telechelic PIB followed by low‐cost thiol‐ene click chemistry. Properties of ‐S‐ containing PU (PIBS‐PU) containing 72.5% PIB were investigated and compared to similar PUs made with HO‐PIB‐OH (PIBO‐PU). Hydrolytic resistance was studied by contact with phosphate‐buffered saline, oxidative resistance by immersing in concentrated HNO3, and metal ion oxidation resistance by exposure to CoCl2/H2O2. Hydrolytic and oxidative resistances of PIBS‐PU and PIBO‐PU are similar and superior to a commercial PDMS‐based PU, Elast‐Eon? E2A. According to 1H NMR spectroscopy the ‐S‐ in PIBS‐PUs remained unchanged upon treatment with HNO3, however, oxidized mainly to ‐SO2‐ by CoCl2/H2O2. Static mechanical properties of PIBS‐PU and PIBO‐PU are similar, except creep resistance of PIBS‐PU is surprisingly superior. The thermal stability of PIBS‐PUs is ~15 °C higher than that of PIBO‐PU. FTIR spectroscopy indicates H bonded S atoms (N‐H…S) between soft and hard segments, which noticeably affect properties. DSC and XRD studies suggest random low‐periodicity crystals dispersed within a soft matrix. Energy dispersive X‐ray spectroscopy–scanning electron microscopy indicates homogeneous distribution of S atoms on PIBS‐PU surfaces. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1119–1131  相似文献   

3.
The adsorption characteristics of 1,3‐benzenedithiol (1,3‐BDT) and 1,3‐benzenedimethanethiol (1,3‐BDMT) on Au surfaces are investigated by means of surface‐enhanced Raman scattering, UV/Vis absorption spectroscopy, and cyclic voltammetry (CV). 1,3‐BDMT is found to adsorb via two S–Au linkages at concentrations below monolayer coverage, but to have an upright geometry as the concentration increases on Au nanoparticles. On the other hand, 1,3‐BDT is found to adsorb by forming two S–Au linkages, regardless of concentration, based on the disappearance of the ν(SH)free stretching band. Because of the absence of the methylene unit, 1,3‐BDT appeares not to self‐assemble efficiently on Au surfaces. The UV/Vis absorption spectroscopy and CV techniques are also applied to check the formation of self‐assembled monolayers of 1,3‐BDT and 1,3‐BDMT on Au. Density functional theory calculations based on a simple adsorption model using an Au8 cluster are performed to better understand the nature of the adsorption characteristics of 1,3‐BDT and 1,3‐BDMT on Au surfaces.  相似文献   

4.
Self‐assembly on a polycrystalline aluminum substrate of two sulfur‐containing alkylphosphonic acids, CH3? (CH2)11? S? (CH2)2? PO(OH)2, and CF3? (CF2)7? (CH2)2? S? (CH2)2? PO(OH)2, has been compared with CH3? (CH2)15? PO(OH)2. The reaction of the phosphonic head groups with the hydroxyls at the alumina surface to form phosphonates was studied with X‐ray photoelectron spectroscopy (XPS) and polarization modulation infrared reflection‐absorption spectroscopy (PM‐IRRAS). Barrier effects of the resulting layers was assessed by electrochemical polarization curves. With the conditions used in the present work for the self‐assembly reaction, it appears that the sulfur‐containing molecules do not perform as well as CH3? (CH2)15? PO(OH)2 in terms of film quality. Questions are raised about the possibility that the sulfur‐containing molecules could undergo cleavage during surface modification. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
An efficient two‐step method for the preparation of 3‐(2‐hydroxyethoxy)‐ or 3‐(3‐hydroxypropoxy)isobenzofuran‐1(3H)‐ones 3 has been developed. Thus, the reaction of 1‐(1,3‐dioxol‐2‐yl)‐ or 1‐(1,3‐dioxan‐2‐yl)‐2‐lithiobenzenes, generated in situ by the treatment of 1‐bromo‐2‐(1,3‐dioxol‐2‐yl)‐ or 1‐bromo‐2‐(1,3‐dioxan‐2‐yl)benzenes 1 with BuLi in THF at ?78°, with (Boc)2O afforded tert‐butyl 2‐(1,3‐dioxol‐2‐yl)‐ or 2‐(1,3‐dioxan‐2‐yl)benzoates 2 , which can subsequently undergo facile lactonization on treatment with CF3COOH (TFA) in CH2Cl2 at 0° to give the desired products in reasonable yields.  相似文献   

6.
We investigated the adsorption mechanism of homocysteine (HS? CH2? CH2? CH(NH2)? COOH) on the Ge(100) surface along with its electronic structures and adsorption geometries to determine the sequence of adsorption of this amino acid′s functional groups using core‐level photoemission spectroscopy (CLPES) in conjunction with density functional theory (DFT) calculations. We found that the “SH‐dissociated OH‐dissociated N‐dative‐bonded structure” and the “SH‐dissociated OH‐dissociation‐bonded structure” were preferred at a monolayer (ML) coverage of 0.30 (lower coverage) and 0.60 (higher coverage), respectively. The “SH‐dissociated OH‐dissociated N‐dative‐bonded structure” was the most stable structure. Moreover, we systematically confirmed the sequence of adsorption of the functional groups of the homocysteine molecule on the Ge(100) surface, which is thiol group (? SH), carboxyl group (? COOH), and amine group (? NH2).  相似文献   

7.
The non‐CO‐involved oxidation of methanol (NCOIOM) on a Pt(111) surface is investigated by using density functional theory. Relative energy diagrams for the NCOIOM are established in which the reaction mechanisms for a catalytic cycle—including the associated barriers, the reactive energies, the intermediates, and the transient states—are shown. The results indicate that the reaction proceeds via the kinetically favored pathways: A) HCOH→HC(OH)2→HCOOH→HCOO‐ [‐COOH]→CO2 and B) CHO→HCOOH→HCOO‐ [‐COOH]→CO2, with OH playing a key role in the entire process. The vibrational frequencies of the intermediate states derived from the calculations are in agreement with the experimental measurements.  相似文献   

8.
This article demonstrates a new, modular approach to surface functionalization that harnesses chain entanglement. A layer of functionalized polyisobutylene, (PIB)‐ω, where ω = ‐OH, ‐thymine (T), ‐hexaethylene glycol (HEG), poly(ethylene glycol) (‐PEG‐OH), methoxy‐functionalized poly(ethylene glycol) (‐PEG‐OCH3), and ‐tetraethylene glycol‐α‐lipoate (TEG‐αL) was adhered to PIB‐based thermoplastic elastomer (TPE) surfaces. X‐ray photoelectron spectroscopy (XPS) at angles ranging from 20° to 75° showed decreasing polar group concentration with increasing penetration depth, confirming segregation of polar groups toward the surface. Water contact angle (WCA) of the PIB‐based TPE dropped from 95° to 79°?83° upon coating, and soaking in water for 24 h further decreased the WCA. Dynamic WCA measurements showed 40–30° receding angles, showing that stimulus from an aqueous environment elicits enrichment of polar groups on the surface. Fibrinogen (Fg) adsorption on the various surfaces was quantified using surface plasmon resonance (SPR). Static and dynamic WCA did not vary significantly among TPE + PIB‐ω surfaces, but there were dramatic differences in Fg adsorption: 256 ng/cm2 was measured on the native TPE, which dropped to 40 and 22 ng/cm2 on PIB‐PEG‐OCH3 and PIB‐PEG‐OH‐coated surfaces. PIB‐TEG‐αL‐coated surfaces presented the lowest Fg adsorption with 14 ng/cm2. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 1742–1749  相似文献   

9.
The OH? and OH adsorption structures on Au55 and Au13 nanoparticles surfaces are analyzed using density functional theory. The most stable OH? adsorption site of Au55 and Au13 nanoparticles is found to be the vertex top site followed by the (111)‐(100) edge bridge site. On the contrary, the stability order of OH adsorption is opposite to that of OH?. The adsorption of OH? is calculated to be weaker than that of OH, which shows different charge transfer and interactions with gold surface. Coadsorption on nanoparticles is studied to find that multiple OH? species prefer the most stable sites of single OH? adsorption. The hydrogen bonding between adsorbed OH? on gold surface is a key factor in stabilizing the adsorbates on the Au surface. © 2015 Wiley Periodicals, Inc.  相似文献   

10.
Three kinds of OH‐terminated polylactides were synthesized by the ring‐opening polymerization of lactide, with an alcohol such as dodecanol, glycerol, or pentaerythritol, in the presence of stannous octoate. Moreover, Cl‐, NH2‐, and COOH‐terminated polylactides were synthesized from OH‐terminated polylactides. The end groups of the polylactides were identified by 1H NMR and 13C NMR. According to thermal analysis, the cold crystallization temperatures of Cl‐, NH2‐, and COOH‐terminated polylactides were higher than those of OH‐terminated polylactides. The thermal stability of OH‐terminated polylactides was poor, whereas NH2‐ and Cl‐terminated polylactides were more resistant to thermal degradation. In a hydrolysis degradation test, the mass and molecular weight loss of COOH‐terminated polylactides were high, whereas those of Cl‐ and NH2‐terminated polylactides were much lower. These end‐group effects were increased with an increasing number of chain arms. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 973–985, 2001  相似文献   

11.
The mechanisms of methanol (CH3OH) oxidation on the PtPd(111) alloy surface were systematically investigated by using density functional theory calculations. The energies of all the involved species were analyzed. The results indicated that with the removal of H atoms from adsorbates on PtPd(111) surface, the adsorption energies of (i) CH3OH, CH2OH, CHOH, and COH increased linearly, while those of (ii) CH3OH, CH3O, CH2O, CHO, and CO exhibited odd‐even oscillation. On PtPd(111) surface, CH3OH underwent the preferred initial C H bond scission followed by successive dehydrogenation and then CHO oxidation, that is, CH3OH → CH2OH → CHOH → CHO → CHOOH → COOH → CO2. Importantly, the rate‐determining step of CH3OH oxidation was found to switch from CO → CO2 on Pt(111) to COOH → CO2 + H on PtPd(111) with a lower energy barrier of 0.96 eV. Moreover, water also decomposed into OH more easily on PtPd(111) than on Pt(111). The calculated results indicate that alloying Pt with Pd could efficiently improve its catalytic performance for CH3OH oxidation through altering the primary pathways from the CO path on pure Pt to the non‐CO path on PtPd(111).  相似文献   

12.
Reaction of [Au(DAPTA)(Cl)] with RaaiR’ in CH2Cl2 medium following ligand addition leads to [Au(DAPTA)(RaaiR’)](Cl) [DAPTA=diacetyl-1,3,5-triaza-7-phosphaadamantane, RaaiR’=p-R-C6H4-N=N- C3H2-NN-1-R’, (1—3), abbreviated as N,N’-chelator, where N(imidazole) and N(azo) represent N and N’, respectively; R=H (a), Me (b), Cl (c) and R’=Me (1), CH2CH3 (2), CH2Ph (3)]. The 1H NMR spectral measurements in D2O suggest methylene, CH2, in RaaiEt gives a complex AB type multiplet while in RaaiCH2Ph it shows AB type quartets. 13C NMR spectrum in D2O suggest the molecular skeleton. The 1H-1H COSY spectrum in D2O as well as contour peaks in the 1H-13C HMQC spectrum in D2O assign the solution structure.  相似文献   

13.
Electrochemical reduction of CO2 to ethanol, a clean and renewable liquid fuel with high heating value, is an attractive strategy for global warming mitigation and resource utilization. However, converting CO2 to ethanol remains great challenge due to the low activity, poor product selectivity and stability of electrocatalysts. Here, the B‐ and N‐co‐doped nanodiamond (BND) was reported as an efficient and stable electrode for selective reduction of CO2 to ethanol. Good ethanol selectivity was achieved on the BND with high Faradaic efficiency of 93.2 % (−1.0 V vs. RHE), which overcame the limitation of low selectivity for multicarbon or high heating value fuels. Its superior performance was mainly originated from the synergistic effect of B and N co‐doping, high N content and overpotential for hydrogen evolution. The possible pathway for CO2 reduction revealed by DFT computation was CO2→*COOH→*CO→*COCO→*COCH2OH→*CH2OCH2OH→CH3CH2OH.  相似文献   

14.
Via chemical adsorption, various films were assembled onto silicon surfaces. The structures and properties of the monolayer‐ or bilayer‐modified silicon surfaces, such as Si‐C10H20 CH2OC(O)CF3, Si‐C10H20CH2OH, and Si‐C10H20‐CH2‐NH‐C18H37, were investigated by various techniques. x‐ray photoelectron spectroscopy (XPS) gave clear proofs of the formation of octadecylamine layer and other kinds of layers on silicon surfaces. The contact angle measurements showed that the wettability of silicon surfaces was dominated by the terminal functional groups of the attached layers. Atomic force microscopy (AFM) observations showed that interesting patterns have formed on the monolayer‐ or bilayer‐modified silicon surfaces. Electrochemical impedance spectra (EIS) measurements showed that the Si‐C10H20CH2‐NH‐C18H37 has a better ability to prevent charge transfer as compared with that of Si‐C10H20CH2OH, which may find applications in the area of surface passivations.  相似文献   

15.
Asymmetrically functionalized, four‐armed, Tween 20 derivatives that formed stable monomolecular films on solid substrates were designed and synthesized. Thiol‐modified Tween 20 was used for forming self‐assembled monolayers (SAMs) on gold, and maleimide‐modified Tween 20 was introduced onto SiO2 surfaces with SAMs of (3‐mercaptopropyl)trimethoxysilane through Michael addition. These structurally modified Tween 20 compounds gave the original characteristics of Tween 20, non‐biofouling (from ethylene glycol groups) and functionalizable (from OH groups) properties, to each substrate. The non‐biofouling properties of the Tween 20‐coated gold and SiO2 surfaces were investigated by surface plasmon resonance spectroscopy and ellipsometry, and these surfaces showed strong resistance against nonspecific adsorption of proteins. In addition, the biospecific binding of streptavidin was achieved after coupling of (+)‐biotinyl‐3,6,9‐trioxaundecanediamine onto the non‐biofouling surfaces through amide‐bond formation.  相似文献   

16.
A C60‐polyphenylacetylene (C60‐PPA) and polyvinylpyrrolidone (PVP) coated two‐channel surface acoustic wave (SAW) crystal gas sensor with a homemade computer interface for data acquisition and data processing was developed and employed to detect carbon disulfide (CS2) and methanol (CH3OH) vapors in polymer plants. The frequency of surface acoustic wave oscillator decreases due to the adsorption of gas molecules on the coated materials of the SAW sensor. Six coating materials (C60‐PPA, nafion, PPA, crytand [2,2], polyethene glycol and PVP) were used to adsorb and detect carbon disulfide and methanol gases. Adsorption of all the six coating materials to CS2 and CH3OH was found to be physical adsorption. The C60‐PPA coated SAW detector exhibited more sensitive to CS2 than the other coating materials. In contrast, the PVP coated SAW detector was more sensitive to CH3OH than the other coating materials. With the two‐channel SAW sensor, the C60‐PPA coated SAW showed a good detection limit of 0.4 ppm and good reproducibility with RSD of 3.37 % (n=10) for CS2. Similarly, the PVP coated SAW also showed a good detection limit of 0.05 ppm and good reproducibility, with RSD of 0.86 % (n=10) for CH3OH. The interference effect of other organic molecules on the SAW detection system was negligible, except for the irreversible adsorption of C60‐PPA to propylamine. The frequency signals from the two‐channel SAW sensor array C60‐PPA and PVP coatings were processed by a back‐propagation artificial neural network (BPN) and multiple regression analysis (MRA). Thus a two‐channel SAW sensor array with BPN and MRA has been successfully applied for the qualitative and quantitative analyses of CS2 and CH3OH in mixtures.  相似文献   

17.
The production of dimethyl sulfoxide (DMSO) and dimethyl sulfone (DMSO2) in the dimethyl sulfide (DMS) degradation scheme initiated by the hydroxyl (OH) radical has been shown to be very sensitive to nitrogen oxides (NOx) levels. In the present work we have explored the potential energy surfaces corresponding to several reaction pathways which yield DMSO2 from the CH3S(O)(OH)CH3 adduct [including the formation of CH3S(O)(OH)CH3 from the reaction of DMSO with OH] and the reaction channels that yield DMSO or/and DMSO2 from the CH3S(O2)(OH)CH3 adduct are also studied. The formation of the CH3S(O2)(OH)CH3 adduct from CH3S(OH)CH3 (DMS‐OH) and O2 was analyzed in our previous work. All these pathways due to the presence of NOx (NO and NO2) and also due to the reactions with O2, OH and HO2 are compared with the objective of inferring their kinetic relevance in the laboratory experiments that measure DMSO2 (and DMSO) formation yields. In particular, our theoretical results clearly show the existence of NOx‐dependent pathways leading to the formation of DMSO2, which could explain some of these experimental results in comparison with experimental measurements carried out in NOx‐free conditions. Our results indicate that the relative importance of the addition channel in the DMS oxidation process can be dependent on the NOx content of chamber experiments and of atmospheric conditions. © 2008 Wiley Periodicals, Inc. J Comput Chem, 2009  相似文献   

18.
应用B3LYP方法,结合6-31G**、cc-pVDZ、aug-cc-pVDZ和cc-pVTZ基组对硫代乙酸的两种异构体CH3C(O)SH和CH3C(S)OH在基态势能面上的9个单分子反应进行了研究。本文计算预测硫代乙酸主要以CH3C(O)SH的形式存在,两种异构体均以顺式构象为优势构象。通过对比CH3C(O)SH、CH3C(S)OH和 CH3C(O)OH的反应性差异,我们可以得出结论:CH3C(O)OH中-OH基团的O被S取代后,只有当-SH作为一个整体参加反应时才对分子解离过程有较大影响;而C=O或C=S对反应性影响较小。  相似文献   

19.
Self assembly monolayers of octadecyltrichlorosilane Cl3‐Si‐(CH2)17‐CH3 and 17‐cyanopentadecyltrichlorosilane Cl3‐Si‐(CH2)17‐CN on silicon wafers have been prepared by adsorption from solution. The molecular orientation within the monolayers was investigated by using Polarisation Modulation FTIR spectroscopy. Quantitative analysis reveals that both types of silanes – monofunctionalised and bifunctionalised – form highly ordered monolayers. A high degree of ordering as well as a small tilt angel of the molecular backbones with respect to the surface normal are indicated by the strength of the Si‐O‐Si stretching modes and the weakness of the CH2 stretching modes. The decomposition of the terminal nitrile group of the substituted silane into a carboxyl group could be identified. The decomposition is caused by a high local HCl concentration, which develops upon binding of 17‐cyanopentadecyltrichlorosilane to the OH groups of the silicon surface.  相似文献   

20.
A new type of ethoxylated double‐tail trisiloxane surfactants containing a propanetrioxy spacer of the general formula ROCH2CH(OR)CH2O(CH2CH2O)xCH3 [R = Me3SiOSiMe(CH2)3OSiMe3, x = 8.4, 12.9, 22] has been synthesized. Their structures were characterized by 1H‐NMR, 13C‐NMR and 29Si‐NMR spectroscopy. The critical micelle concentration (CMC) values of these double‐tail trisiloxane surfactants were at the level of 10−5 mol l−1, and the surface tension values of their aqueous solutions at CMC were in the range of 21‐24.9 mN m−1. Only the double‐tail trisiloxane surfactant with average ethoxy units of 8.4 ( 1P ) possesseda good spreading ability (SA) value. Its SA values of aqueous solutions (5.0 × 10−3 mol l−1) on parafilm and Ficus microcarpa leaf surfaces were more than 15 (within 10 min) and 13 (within 3 min), respectively. The trisiloxane surfactant 1P was also found to have the strongest hydrolysis resistant ability among all of the double‐tail trisiloxane surfactants prepared. Its aqueous solutions were stable for 130 days in an acidic environment (pH 4.0) and 59 days in an alkaline environment (pH 10.0) with surface tension values less than 23 mN m−1. It is suggested that this surfactant can be used as a wetting agent or spreading agent in certain extreme pH environments. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号