首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nanomechanical properties of end grafted polymer layers were studied by AFM based, colloidal probe compression measurements. Zwitterionic poly(sulfobetaine methacrylate) (PSBMA) brush was grafted from planar Si surface and poly(methyl methacrylate) (PMAA) brush was grown on colloidal probe by surface initiated atom transfer radical polymerization. PMAA brush was further modified with adhesion promoting arginyl-glycyl-aspartic acid (RGD) peptide sequences. Force–distance curves were obtained for systems where the polymer brushes were probed on unmodified surfaces or face to each other. For each systems the grafting density of the polymer brush was determined applying a ‘box’ like polymer brush model based on the theory by de Gennes. ‘Average’ grafting density was calculated in cases when two polymer brushes face each other: RGD functionalized PMAA or PMAA against PSBMA. For our systems the values for the grafting density was between 0.04 and 0.11 nm?2. Furthermore the measured approach force–distance curves were fitted according to the Hertz model and the apparent Young’s modulus was determined for all measurements being in a range of around 250 kPa at physiological conditions.  相似文献   

2.
This work describes studying the permanent grafting of carboxylic acid end-functionalized poly(ethylene glycol) methyl ether (PEG) chains of different molecular weights from the melt onto a surface employing poly(glycidyl methacrylate) ultrathin film as an anchoring layer. The grafting led to the synthesis of the complete PEG brushes possessing exceptionally high grafting density. The maximum thickness of the attached PEG films was strongly dependent on the length of the polymer chains being grafted. The maximum grafting efficiency was close to the critical entanglement molecular weight region for PEG. All grafted PEG layers were in the "brush regime", since the distance between grafting sites for the layers was lower than the end-to-end distance for the anchored macromolecules. Scanning probe microscopy revealed that the grafting process led to complete PEG layers with surface smoothness on a nanometric scale. Practically all samples were partly or fully covered with crystalline domains that disappeared when samples were scanned under water. Due to the PEG hydrophilic nature, the surface with the grafted layer exhibited a low (up to 21 degrees ) water contact angle.  相似文献   

3.
In this paper, a new and simple pathway to fabricate polymer brush layers with lateral control over the chemical composition is described. The process combines two subsequent free radical grafting from steps: in the first step, a micropatterned polymer brush is grown by photochemical initiation of the polymer growth from the surface through a mask in direct contact. The uncoated areas are then backfilled with a second polymer brush by using the unreacted surface-bound initiator molecules to thermally trigger a second polymerization. As an example for the overall process, the co-assembly of a micropatterned, soft, water-swellable layer consisting of the two-brush system poly(methacrylic acid) (PMAA)-poly(hydroxyethyl methacrylate) (PHEMA) is demonstrated.  相似文献   

4.
We present the first example of a surface-initiated group transfer polymerization (SI-GTP) mediated by rare earth metal catalysts for polymer brush synthesis. The experimentally facile method allows rapid grafting of polymer brushes with a thickness of >150 nm in <5 min at room temperature. We show the preparation of common poly(methacrylate) brushes and demonstrate that SI-GTP is a versatile route for the preparation of novel polymer brushes. The method gives access to both thermoresponsive and proton-conducting brush layers.  相似文献   

5.
Dissipative particle dynamics (DPD) was used to investigate the behavior of two opposing end-grafted charged polymer brushes in aqueous media under normal compression and lateral shear. The effect of polymer molecular weight, degree of ionization, grafting density, ionic strength, and compression on the polymer conformation and the resulting shear force between the opposing polymer layers were investigated. The simulations were carried out for the poly(tert-butyl methacrylate)-block-poly(sodium sulfonate glycidyl methacrylate) copolymer, referred as PtBMA-b-PGMAS, end-attached to a hydrophobic surface for comparison with previous experimental data. Mutual interpenetration of the opposing end-grafted chains upon compression is negligible for highly charged polymer brushes for compression ratios ranging from 2.5 to 0.25. Under electrostatic screening effects or for weakly charged polymer brushes, a significant mutual interpenetration was measured. The variation of interpenetration thickness with separation distance, grafting density, and polymer size follows the same scaling law as the one observed for two opposing grafted neutral brushes in good solvent. However, compression between two opposing charged brushes results in less interpenetration relative to neutral brushes when considering equivalent grafting density and molecular weight. The friction coefficient between two opposing polymer-coated surfaces sliding past each other is shown to be directly correlated with the interpenetration thickness and more specifically to the number of polymer segments within the interpenetration layer.  相似文献   

6.
The diblock copolymer poly(methyl methacrylate)‐b‐poly(sodium sulfonated glycidyl methacrylate) (PMMA‐b‐PSGMA) was end‐attached by its hydrophobic block (PMMA) onto mica hydrophobized by a stearic trimethylammonium iodide (STAI) layer, to form a polyelectrolyte brush immersed in water. With a surface force balance (SFB), we extended earlier measurements between two such brush layers for the case of normal and shear forces at different shear rates, surface separation, and compressions between one mica surface coated with STAI or a STAI‐diblock layer against a bare mica surface. After coating one of the surfaces with STAI, a long range attraction that results in a jump into an adhesive flat contact between the hydrophobic and hydrophilic surfaces was observed. A very different behavior was seen after forming the polyelectrolyte brush on the STAI‐coated surface. The long range attraction was replaced by repulsion, accompanied by very low friction during shear (ca. three orders of magnitude lower than with adsorbed polyelectrolytes). On further compression, a weak attraction to the adhesive contact was observed. From the final surface–surface contact separation, we deduce that most of the polyelectrolyte diblock brush layer was squeezed out from the gap, leaving the STAI layer and a small amount of the polymer attached to the surface. Stick‐sliding behavior was seen while applying shear, suggesting a dissipation mechanism caused by the trapped polyelectrolyte. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 193–204, 2005  相似文献   

7.
This article demonstrates a water‐lubrication system using high‐density hydrophilic polymer brushes consisting of 2,3‐dehydroxypropyl methacrylate (DHMA), vinyl alcohol, oligo(ethylene glycol)methyl ether methacrylate, 2‐(methacryloyloxy)ethyltrimethylammonium chloride (MTAC), 3‐sulfopropyl methacrylate potassium salt (SPMK), and 2‐methacryloyloxyethyl phosphorylcholine (MPC) prepared by surface‐initiated controlled radical polymerization. Macroscopic frictional properties of brush surfaces were characterized by sliding a glass ball probe in water using a ball‐on‐plate type tribotester under the load of 0.1–0.49 N at the sliding velocity of 10?5–10?1 m s?1 at 298 K. A poly(DHMA) brush showed a relatively larger friction coefficient in water, whereas the polyelectrolyte brushes, such as poly(SPMK) and poly(MPC), revealed significantly low friction coefficients below 0.02 in water and in humid air conditions. A drastic reduction in the friction coefficient of polyelectrolyte brushes in aqueous solution was observed at around 10?3–10?2 m s?1 owing to the hydrodynamic lubrication effect, however, an increase in salt concentration in the aqueous solution led to the increase in the friction coefficients of poly(MTAC) and poly(SPMK) brushes. The poly(SPMK) brush showed a stable and low friction coefficient in water even after sliding over 450 friction cycles, indicating a good wear resistance of the brush film. © 2010 The Japan Chemical Journal Forum and Wiley Periodicals, Inc. Chem Rec 10: 208–216; 2010: Published online in Wiley InterScience ( www.interscience.wiley.com ) DOI 10.1002/tcr.201000001  相似文献   

8.
We report the synthesis of ternary polymer particle material systems composed of (a) a spherical colloidal particle core, coated with (b) a polyelectrolyte intermediate shell, and followed by (c) a grafted polymer brush prepared by surface-initiated polymerization as the outer shell. The layer-by-layer (LbL) deposition process was utilized to create a functional intermediate shell of poly(diallyl-dimethylammonium chloride)/poly(acrylic acid) multilayers on the colloid template with the final layer containing an atom transfer radical polymerization (ATRP) macroinitiator polyelectrolyte. The intermediate core-shell architecture was analyzed with FT-IR, electrophoretic mobililty (zeta-potential) measurements, atomic force microscopy, and transmission electron microscopy (TEM) techniques. The particles were then utilized as macroinitiators for the surface-initiated ATRP grafting process for poly(methyl methacrylate) polymer brush. The polymer grafting was confirmed with thermo gravimetric analysis, FT-IR, and TEM. The polymer brush formed the outermost shell for a ternary colloidal particle system. By combining the LbL and surface-initiated ATRP methods to produce controllable multidomain core-shell architectures, interesting functional properties should be obtainable based on independent polyelectrolyte and polymer brush behavior.  相似文献   

9.
Hydrogels of poly(2-hydroxyethyl methacrylate) (PHEMA) with well-defined polyelectrolyte brushes of poly(sodium 4-styrenesulfonate) (PNaSS) of various molecular weights were synthesized, keeping the distance between the polymer brushes constant at ca. 20 nm. The effect of polyelectrolyte brush length on the sliding friction against a glass plate, an electrorepulsive solid substrate, was investigated in water in a velocity range of 7.5 x 10(-5) to 7.5 x 10(-2) m/s. It is found that the presence of polymer brush can dramatically reduce the friction when the polymer brushes are short. With an increase in the length of the polymer brush, this drag reduction effect only works at a low sliding velocity, and the gel with long polymer brushes even shows a higher friction than that of a normal network gel at a high sliding velocity. The strong polymer length and sliding velocity dependence indicate a dynamic mechanism of the polymer brush effect.  相似文献   

10.
Zwitterionic and cationic polyelectrolyte brushes were prepared by surface-initiated atom transfer radical polymerization of 2-methacryloyloxy- ethyl phosphorylcholine (MPC) and 2-(N,N-dimethylamino)ethyl methacrylate (DMAEMA), respectively. The poly(DMAEMA) brush was treated with methyl iodide to form poly[2-(methacryloyloxy) ethyltrimethylammonium iodide] [poly(METAI)]. The effects of ionic strength on brush structure and surface properties of densely grafted polyelectrolyte brushes were analyzed by contact angle measurements, neutron reflectivity (NR) and macroscopic friction tests. Both polyelectrolyte brushes exhibited hydrophilic properties. The contact angle of the poly(MPC) brush surface against water was ca. 0° in air and the contact angle of the air bubble in water was ca. 170°. The air bubble in water hardly attached to the poly(MPC) brush surface, indicating super hydrophilic characteristics. NR measurements of poly(MPC) and poly(METAI) brushes showed that the grafted polymer chains were extended from the substrate surface in a good solvent such as water. Interestingly, NR study did not reveal the shrinkage of the brush chain in salt solution. The polyelectrolyte brushes immersed in both water and NaCl solution at various concentrations showed a low friction coefficient and low adhesion force.  相似文献   

11.
Acrylic polymers, including poly(methyl methacrylate), poly(2,2,2-trifluoroethyl methacrylate), poly( N,N'-dimethyaminoethyl methacrylate), and poly(2-hydroxyethyl methacrylate) were grafted from flat nickel and copper surfaces through surface-initiated atom transfer radical polymerization (ATRP). For the nickel system, there was a linear relationship between polymer layer thickness and monomer conversion or molecular weight of "free" polymers. The thickness of the polymer brush films was greater than 80 nm after 6 h of reaction time. The grafting density was estimated to be 0.40 chains/nm2. The "living" chain ends of grafted polymers were still active and initiated the growth of a second block of polymer. Block copolymer brushes with different block sequences were successfully prepared. The experimental surface chemical compositions as measured by X-ray photoelectron spectroscopy agreed very well with their theoretical values. Water contact angle measurements further confirmed the successful grafting of polymers from nickel and copper surfaces. The surface morphologies of all samples were studied by atomic force microscopy. This study provided a novel approach to prepare stable functional polymer coatings on reactive metal surfaces.  相似文献   

12.
A new method for surface-initiated atom transfer radical polymerization (ATRP) on the technical polymer poly(ethylene terephthalate) (PET) has been developed which allows controlling and estimating the layer thickness of the grafted polymer in the isocylindrical pores of track-etched membranes. After PET surface treatment by oxidative hydrolysis, the bromoalkyl initiator was immobilized on the PET surface in a two-step solid-phase reaction; the isoporous membrane structure was preserved, and the pore diameter was increased from 760 to 790 nm. Poly(N-isopropylacrylamide) (PNIPAAm) was grafted under ATRP conditions from a methanol/water mixture at room temperature. Both monomer concentration and reaction time could be used as parameters to adjust the degree of grafting. Effective grafted layer thickness and its response to temperature were estimated from pure water permeability. All data, especially the high polymer densities (0.37 g/cm3) in the swollen layers at 25 degrees C, indicate that grafted PNIPAAm with a "brush" structure has been achieved. For dry PNIPAAm layer thicknesses on the PET pore walls of up to 80 nm, a temperature-induced swelling/deswelling ratio of approximately 3 had been observed. Reduction of the brush grafting density, via composition of the reaction mixture used in solid-phase synthesis for initiator immobilization, led to an increase of that swelling/deswelling ratio. Further, density and temperature response of the grafted PNIPAAm layers synthesized via ATRP were compared with those obtained in the same membranes by less controlled photografting, leading to lower grafting density and larger gradients in grafted layer density and, consequently, much higher swelling/deswelling ratios (>15).  相似文献   

13.
Normal and shear forces were measured as a function of surface separation, D, between hydrophobized mica surfaces bearing layers of a hydrophobic-polyelectrolytic diblock copolymer, poly(methyl methacrylate)- block-poly(sodium sulfonated glycidyl methacrylate) copolymer (PMMA- b-PSGMA). The copolymers were attached to each hydrophobized surface by their hydrophobic PMMA moieties with the nonadsorbing polyelectrolytic PSGMA tails extending into the aqueous medium to form a polyelectrolyte brush. Following overnight incubation in 10 (-4) w/v aqueous solution of the copolymer, the strong hydrophobic attraction between the hydrophobized mica surfaces across water was replaced by strongly repulsive normal forces between them. These were attributed to the osmotic repulsion arising from the confined counterions at long-range, together with steric repulsion between the compressed brush layers at shorter range. The corresponding shear forces on sliding the surfaces were extremely low and below our detection limit (+/-20-30 nN), even when compressed down to a volume fraction close to unity. On further compression, very weak shear forces (130 +/- 30 nN) were measured due to the increase in the effective viscous drag experienced by the compressed, sliding layers. At separations corresponding to pressures of a few atmospheres, the shearing motion led to abrupt removal of most of the chains out of the gap, and the surfaces jumped into adhesive contact. The extremely low frictional forces between the charged brushes (prior to their removal) is attributed to the exceptional resistance to mutual interpenetration displayed by the compressed, counterion-swollen brushes, together with the fluidity of the hydration layers surrounding the charged, rubbing polymer segments.  相似文献   

14.
Responsive polymeric brushes of poly(methacrylic acid) (PMAA) were grafted from silicon surfaces using controlled surface-initiated atom-transfer radical polymerization (SI-ATRP). The growth kinetics of PMAA was investigated with respect to the composition of the ATRP medium by grafting the polymer in mixtures of water and methanol with different ratios. The dissociation behavior of the polymer layers was characterized by FTIR titration after incubating the polymer-grafted substrates in PBS buffer solutions with different pH values. PMAA layers show a strong pH-dependent behavior with an effective pK(a) of the bulk polymer brush of 6.5 ± 0.2, which is independent of the polymer brush thickness and methanol content of the ATRP grafting medium. The pH-induced swelling and collapse of the grafted polymer layers were quantified in real time by in situ ellipsometry in liquid environment. Switching between polymer conformations at pH values of 4 and 8 is rapid and reversible, and it is characterized by swelling factors (maximum thickness/minimum thickness) that increase with decreasing the methanol content of the SI-ATRP medium.  相似文献   

15.
In situ modification of surfaces with thin layers of polymers is of growing interest as adjustment of surface properties can be made on demand. We present herein a supramolecular ‘grafting to’ polymer brush via the recognition of surface-bound cucurbit[8]uril (CB[8]) rotaxanes towards end-functionalised polyethylene glycol (PEG). This dynamic supramolecular method represents advantages over traditional approaches, which employ covalent bond formation in the ‘grafting to’ process. Brush properties can be easily modified post-preparation by exchanging the polymers with small molecules in a controlled, reversible manner. Including both redox- and light-responsive guests in a single rotaxane entity, the CB[8]-mediated preparation of the polymer brush offers unique opportunities to switch the brush composition efficiently. While the PEG brushes are well hydrated in a good solvent (water) and stretch away from the surface, they collapse in a poor solvent (toluene), leading to the formation of a dense layer on the surface. This collapsed conformation protects the heteroternary complexes of CB[8]-rotaxane from dissociation and maintains the attachment of polymers on the surface.  相似文献   

16.
Poly(2-(methacryloyloxy)ethyl phosphorylcholine) (PMPC) macromonomers have been prepared by the atom transfer radical polymerization (ATRP) of 2-(methacryloyloxy)ethyl phosphorylcholine (MPC) using a bifunctional disulfide-based initiator. To attach a terminal polymerizable methacrylate group, the central disulfide bond was cleaved and the resulting thiols were conjugated to 3-(acryloyloxy)-2-hydroxypropyl methacrylate using tris(2-carboxyethyl)phosphine (TCEP) in water. Here TCEP serves as both the disulfide cleavage agent and also the catalyst for the subsequent Michael addition, which is highly selective for the acrylate group. The resulting methacrylate-terminated macromonomers were used as a reactive steric stabilizer for the aqueous emulsion polymerization of styrene, yielding near-monodisperse PMPC-stabilized polystyrene (PS) latexes of around 100-200 nm in diameter. As a comparison, the disulfide-containing PMPC homopolymer precursor and the intermediate thiol-functional PMPC homopolymer (PMPC-SH) were also evaluated as potential steric stabilizers. Interestingly, near-monodisperse latexes were also obtained in each case. These three sterically-stabilized latexes, prepared using either PMPC macromonomer, disulfide-based PMPC homopolymer, or PMPC-SH homopolymer as a reactive steric stabilizer, remained colloidally stable after both freeze-thaw experiments and the addition of an electrolyte, indicating that a coronal layer of PMPC chains prevented flocculation in each case. In contrast, both a charge-stabilized PS latex prepared in the absence of any steric stabilizer and a PS latex prepared in the presence of a nonfunctional PMPC homopolymer exhibited very poor colloidal stability when subjected to a freeze-thaw cycle or the addition of an electrolyte, as expected.  相似文献   

17.
In this study, we present nanowear studies using surface force microscopy (SFM), on nanoscopic thin films of reversibly switchable binary polymer brushes [polystyrene (PS) + poly(2-vinylpyridine) (P2VP)] and respective monobrushes [polystyrene and poly(2-vinylpyridine)] synthesized via “grafting to” method. The aim was to tune the wear in nanothin polymer brush surfaces. Therefore, the effect of conformational switching of PS + P2VP brush on treatment with selective solvents for PS and P2VP chains on the wear process was investigated. Wear process on thick spin-coated films of PS and P2VP was also investigated for comparison. Nanowear experiments were performed using SFM tip by repeating scans over the surface to follow the wear process closely. The wear process on different surfaces was explained on the basis of molecular entanglement as well as adhesion and friction on the sample surface. For spin-coated PS film as well as PS and PS + P2VP brush surfaces (treated with toluene) with molecular entanglements at surface, wear mechanism involved formation of ripples. However, in case of spin-coated P2VP films as well as P2VP and PS + P2VP brush surfaces (treated with ethanol) with no molecular entanglements at surface, wear occurred via removal of polymer chains and their accumulation at the rim. For PS + P2VP surface treated with acidic water, wear mechanism was complex and inhomogeneous ripple formation was followed by formation of heaps of polymeric material in the center of scanned area. The extent of wear as measured either by root mean square roughness of the surface or spacing between the ripples, increased with the number of scans for all the surfaces. Our study shows that wear mode of polymer brush surfaces is different for different polymers and can be controlled/tuned by the use of binary polymer brushes.  相似文献   

18.
The development of high performance lubricants has been driven by increasingly growing industrial demands and environmental concerns. Herein, we demonstrate oil‐soluble polymer brush‐grafted inorganic nanoparticles (hairy NPs) as highly effective lubricant additives for friction and wear reduction. A series of oil‐miscible poly(lauryl methacrylate) brush‐grafted silica and titania NPs were synthesized by surface‐initiated atom transfer radical polymerization. These hairy NPs showed exceptional stability in poly(alphaolefin) (PAO) base oil; no change in transparency was observed after being kept at ?20, 22, and 100 °C for ≥55 days. High‐contact stress ball‐on‐flat reciprocating sliding tribological tests at 100 °C showed that addition of 1 wt % of hairy NPs into PAO led to significant reductions in coefficient of friction (up to ≈40 %) and wear volume (up to ≈90 %). The excellent lubricating properties of hairy NPs were further elucidated by the characterization of the tribofilm formed on the flat. These hairy NPs represent a new type of lubricating oil additives with high efficiency in friction and wear reduction.  相似文献   

19.
Smart surfaces can be described as surfaces that have the ability to respond in a controllable fashion to specific environmental stimuli. A heterogeneous (mixed) polymer brush (HPB) can provide a synthetic route to designing smart polymer surfaces. In this research we study HPB comprised of end-grafted polystyrene (PS) and poly(2-vinyl pyridine) (P2VP). The synthesis of the HPB involves the use of an "intermolecular glue" acting as a binding/anchoring interlayer between the polymer brush and the substrate, a silicon wafer. We compare anchoring layers of epoxysilane (GPS), which forms a self-assembled monolayer with epoxy functionality, to poly(glycidyl methacrylate) (PGMA), which forms a macromolecular monolayer with epoxy functionality. The PS and P2VP were deposited onto the wafers in a sequential fashion to chemically graft PS in a first step and subsequently graft P2VP. Rinsing the HPB in selective solvents and observing the change in water contact angle as a function of the HPB composition studied the switching nature of the HPB. Scanning probe microscopy was used to probe the topography and phase imagery of the HPB. The nature of the anchoring layer significantly affected the wettability and morphology of the mixed brushes.  相似文献   

20.
The dynamic and reversible switching behaviour of polyelectrolyte brushes of poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) toward changes of the pH value was studied by in situ VIS-spectroscopic ellipsometry (SE). For this, PDMAEMA brushes with three different molecular weights were synthesized via the “grafting from” method using surface initiated atom transfer radical polymerization. In detail, the applicability of different SE data modelling to describe the optical properties of the different brush layers in the swollen and collapsed state was investigated. Especially for the PDMAEMA brushes with a high molecular weight, an improved optical modelling of the experimental data could be achieved and revealed an exponential distribution of the PDMAEMA fraction in the brush layer.
Figure
Analysis of the volume fraction-depth profile of pH responsive poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) brushes attached to a gold substrate using VIS-spectroscopic ellipsometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号