首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A systematic study of separating the actinides from each other in 1 M hydrochloric acid media has been carried out using selective oxidation/reduction processes followed by coprecipitation with neodymium fluoride. We have optimized two such procedures, one with bromate and another with permanganate, for the sequential separation of Am, Pu, Np, and U isotopes. The first procedure involves oxidation of Pu, Np, and U to +6 state in 1 M HCl media at 85° C with 30% NaBrO3 and separation from trivalent Am by collecting the latter on the first NdF3 coprecipitated source. Plutonium is then reduced and converted to +4 oxidation state with 40% NaNO2 at 85°C, while Np and U are kept oxidized with additional bromate in 50–70°C hot solution, thus separating Pu by collection on a second NdF3 source. At this stage, Np present in the filtrate is reduced with hydroxylamine hydrochloride and separated from U by collecting on a third source. Subsequently, U is reduced with 30% TiCl3 and co-precipitated on a final source. The second procedure, which employs KMnO4 in 1 M HCl media at 60–85°C for oxidizing Pu, Np, and U, and separating from Am, produced MnO2 which is collected along with Am on the coprecipitated NdF3. This MnO2 is dissolved on the filter itself with 1 mL of acidified 1.5% H2O2 without any degradation of the -spectra. After evaporating the filtrate to destroy H2O2, Pu, Np, and U are separated by following steps similar to those in the bromate procedure. The recoveries of the actinides with both procedurés are >99%. The decontamination factors are between 103 and 104. The precision and accuracy of measurements, as expressed by the relative standard deviation of replicate analyses, are within 5%. Absolute detection limits for a one-day count on a 600 mm2 detector at 32% counting efficiency and 450 mm2 detector at 27% counting efficiency are about 2.7×10–4 and 3.2×10–4 Bq, respectively. These procedures have been applied to the analysis of actinides in environmental samples.  相似文献   

2.
A method was developed for isolating neptunium from Pu, U or mixed oxide (MOX) samples and its determination by isotope dilution -spectrometry (IDGS) using239Np (243Am) as a spike. Extraction chromatography with trilaurylamine fixed on a SGX-C18 support was used for the isolation of Np. The decontamination factors for U, Pu, Am and Pa vary between 1000–2000 and 100, respectively. The average separation yield of Np is (95±3)%. The amount of243Am required for spiking is about 0.2–0.3 g. It is recommended to use the pair of -rays 86.53 keV (237Np)-106.13 keV (239Np) for the assay of neptunium. A relative uncertainty of 4% or better is achievable in the analysis of plutonium samples, containing 0.4–80 g neptunium. The detection limit, under the proposed experimental conditions, is about 0.05 g Np. The results were compared with the results obtained by using high resolution -spectrometry (HRGS).  相似文献   

3.
Environmental contamination by artificial radionuclides and the evaluation of their sources require precise isotopic analysis and accurate determination of actinide elements above all plutonium and americium. These can be achieved by alpha spectrometry or by inductively coupled plasma mass spectrometry (ICP-MS) after chemical separation. In the present work, a simple, rapid method has been developed for the sequential separation of actinide elements from aqueous solutions and their determination by alpha spectrometry. Extraction chromatography was applied to the separation of 241Am, 244Cm, 239 + 240,238Pu, 237Np and 238,235,234U using microporous polyethylene supporting tri-n-octylamine as the stationary phase and hydrochloric acid with and without reducing agents as the mobile phase. Actinide in 9 M HCl solution is introduced into the anion exchange column; Pu (IV), Np (IV) and U(VI) are retained on the column while Am (III) and Cm passed through. Pu is eluted first, reductively, after which, Np and then U are eluted. The method can be applied to all aqueous solutions which do not contain strong complexing or precipitation agents for the elements considered.  相似文献   

4.
A radiochemical procedure is described for the simultaneous determination of238Pu,239+240Pu,241Pu,241Am,242Cm,244Cm,89Sr, and90Sr in vegetation samples. The method was applied for the determination of these, radionuclides in grass, collected near Munich after the fallout from the reactor accident at Chernobyl, USSR. The specific activities observed were (in Bq kg–1 dry weight):238Pu, 0.077;239+240Pu, 0.15;241Pu, 3.9;241Am, 0.031;242Cm, 3.0;244Cm, 0.008;89Sr, 2000;90Sr, 99.  相似文献   

5.
The interaction of Np(VI), Pu(VI), Np(V), Np(IV), Pu(IV), Nd(III), and Am(III) with Al(III) in solutions at pH 0–4 was studied by the spectrophotometric method. It was shown that, in the range of pH 3–4, the hydrolyzed forms of neptunyl and plutonyl react with the hydrolyzed forms of aluminium. In the case of Pu(VI), the mixed hydroxoaqua complexes (H2O)3PuO2(-OH)2Al(OH)(H2O)3 2+ or (H2O)4PuO2OAl(OH)(H2O)4 2+ are formed at the first stage of hydrolysis. Np(VI) also forms similar hydroxoaqua complexes with Al(III). The formation of the mixed hydroxoaqua complexes was also observed when Np(IV) or Pu(IV) was simultaneously hydrolyzed with Al(III) at pH 1.5–2.5. The Np(IV) complex with Al(III) has, most likely, the formula (H2O) n (OH)Np(-OH)2Al(OH)(H2O)3 3+. At pH from 2 to 4.1 (when aluminium hydroxide precipitates), the Np(V) or Nd(III) ions exist in solutions with or without Al(III) in similar forms. When pH is increased to 5–5.5, these ions are almost not captured by the aluminium hydroxide precipitate.  相似文献   

6.
A combined radiochemical separation method has been developed that enables the simultaneous determination of 234U, 235U, 238U, 237Np, 239,240Pu, 238Pu, 241Am, 242Cm, and 244Cm in medium and low level liquid radioactive wastes. The main steps of the method are sample destruction, co-precipitation on iron(II)-hydroxide and calcium-oxalate, separation by extraction chromatography using supported dipentyl-pentyl phosphonate (UTEVA) and supported N,N-octylphenyl-di-i-butylcarbamoylmethyl phosphine oxide with tributyl phosphate (TRU), and α source preparation. The key parameter of the method is the adjustment of the oxidation states of the actinoides before adding the sample onto the UTEVA column. It has been determined that (NH4)2S2O8 can be used for oxidation state adjustment resulting sufficient chemical yields.  相似文献   

7.
A new method for the determination of transuranium elements, Np, Pu and Am with extraction-liquid scintillation counting has been studied systematically. Procedures for the separation of Pu and Am by HDEHP-TRPO extraction and for the separation of Np by TTA-TiOA extraction have been developed, by which the recovery of Np, Pu and Am is 97%, 99% and 99%, respectively, and the decontamination factors for the major fission products (90Sr,137Cs etc.) are 104–106. Pulse shape discrimination (PSD) technique has been introduced to liquid scintillation counting, by which the counting efficiency of -activity is >99% and the rejection of -counts is >99.95%. This new method, combining extraction and pulse shape discrimination with liquid scintillation technique, has been successfully applied to the assay of Np, Pu and Am in high level radioactive waste.  相似文献   

8.
There is significant interest in ligands that can stabilize actinide ions in oxidation states that can be exploited to chemically differentiate 5f and 4f elements. Applications range from developing large-scale actinide separation strategies for nuclear industry processing to carrying out analytical studies that support environmental monitoring and remediation efforts. Here, we report syntheses and characterization of Np(iv), Pu(iv) and Am(iii) complexes with N-tert-butyl-N-(pyridin-2-yl)hydroxylaminato, [2-(tBuNO)py](interchangeable hereafter with [(tBuNO)py]), a ligand which was previously found to impart remarkable stability to cerium in the +4 oxidation state. An[(tBuNO)py]4 (An = Pu, 1; Np, 2) have been synthesized, characterized by X-ray diffraction, X-ray absorption, 1H NMR and UV-vis-NIR spectroscopies, and cyclic voltammetry, along with computational modeling and analysis. In the case of Pu, oxidation of Pu(iii) to Pu(iv) was observed upon complexation with the [(tBuNO)py] ligand. The Pu complex 1 and Np complex 2 were also isolated directly from Pu(iv) and Np(iv) precursors. Electrochemical measurements indicate that a Pu(iii) species can be accessed upon one-electron reduction of 1 with a large negative reduction potential (E1/2 = −2.26 V vs. Fc+/0). Applying oxidation potentials to 1 and 2 resulted in ligand-centered electron transfer reactions, which is different from the previously reported redox chemistry of UIV[(tBuNO)py]4 that revealed a stable U(v) product. Treatment of an anhydrous Am(iii) precursor with the [(tBuNO)py] ligand did not result in oxidation to Am(iv). Instead, the dimeric complex [AmIII2-(tBuNO)py)((tBuNO)py)2]2 (3) was isolated. Complex 3 is a rare example of a structurally characterized non-aqueous Am-containing molecular complex prepared using inert atmosphere techniques. Predicted redox potentials from density functional theory calculations show a trivalent accessibility trend of U(iii) < Np(iii) < Pu(iii) and that the higher oxidation states of actinides (i.e., +5 for Np and Pu and +4 for Am) are not stabilized by [2-(tBuNO)py], in good agreement with experimental observations.

The coordination modes and electronic properties of a strongly coordinating hydroxylaminato ligand with Np, Pu and Am were investigated.Complexes were characterized by a range of experimental and computational techniques.  相似文献   

9.
This paper presents a rapid method of separation of five actinide elements (Th, U, Np, Pu, and Am) for aqueous media samples. This separation method utilizes the unique chemistries of the actinides at low concentrations1,2 and the properties of the EIChroM TRU-ResinTM extraction resin. In order to cleanly recover the five actinides from aqueous samples or solubilized soil samples, the sample is passed through the column twice. The sample is first loaded in an HCl solution with hydrogen peroxide. This allows the Am and most matrix ions to pass through the column. Then the Th is eluted using dilute HCl followed by the Np and Pu which are eluted together with oxalic acid in dilute HCl solution. Finally, the U is eluted with ammonium oxalate solution. A calcium-oxalate coprecipitation is performed on the original load solution containing the Am ions and the dissolved precipitate is then reloaded onto the TRU-ResinTM column in HNO3 with ascorbic acid. The procedure requires approximately 1.5 working days for experienced technicians, greatly reduces waste, and generally results in actinide recoveries of 80–100%.  相似文献   

10.
This paper presents the results of systematic kinetic studies of valence transformation of U, Np, Pu, Am and Bk in nitrate- and perchlorate solutions under the effect of intensive internal alpha-radiation emitted by244Cm nuclides. The high dose rate of solutions (D=1–8 Gy/s) provides a sufficient yield of H2O2, HNO2 and ClO2 — the main products of alpharadiolysis of water, nitrate and perchlorate ions, respectively, which was determined by spectrophotometric methods immediately in the course of the process under study. To describe the results, a kinetic scheme considering the effect of dose rate and solution composition is proposed. The calculations have been carried out on a BESM-6 computer, a satisfactory agreement between the calculated and experimental data has been obtained.  相似文献   

11.
The uptake behavior of U(VI), Pu(IV), Am(III) and a few long-lived fission products from nitric acid media by bis(2-ethylhexyl) sulfoxide (BESO) adsorbed on Chromosorb has been studied U(VI), Pu(IV) and Zr(IV) are taken up appreciably as compared to trivalent actinides/lanthanides including some coexisting fission product contaminants which are weakly sorbed on the column. Chromosorb could be loaded with (1.12±0.03) g of BESO per g of the support. Maximum sorption is observed around 4–5 mol·dm–3 HNO3 for both U(VI) and Pu(IV), which are sorbed as their disolvates. The elution of (U(VI) and Pu(IV) from the metal loaded sorbent has also been optimized. Desorption of U(VI) is easily accomplished with dilute nitric acid (ca. 0.01 mol·dm–3)while Pu(IV) is reductively stripped with 0.1 mol·dm–3 NH2OH·HCl. Effective sequential separation of U(VI), Pu(IV) and Am(III) from their several admixtures could be readily achieved from real medium and low level active acidic process raffinates.  相似文献   

12.
A sequential separation procedure has been developed for the determination of transuranic elements and fission products in uranium metal ingot samples from an electrolytic reduction process for a metallization of uranium dioxide to uranium metal in a medium of LiCl-Li2O molten salt at 650 °C. Pu, Np and U were separated using anion-exchange and tri-n-butylphosphate (TBP) extraction chromatography. Cs, Sr, Ba, Ce, Pr, Nd, Sm, Eu, Gd, Zr and Mo were separated in several groups from Am and Cm using TBP and di(2-ethylhexyl)phosphoric acid (HDEHP) extraction chromatography. Effect of Fe, Ni, Cr and Mg, which were corrosion products formed through the process, on the separation of the analytes was investigated in detail. The validity of the separation procedure was evaluated by measuring the recovery of the stable metals and 239Pu, 237Np, 241Am and 244Cm added to a synthetic uranium metal ingot dissolved solution.  相似文献   

13.
Assuming that the correlation between the cocrystallization coefficients and solubilities of the co-crystallizing ethylsulphates in the [(Ln,M) (H2O)9] (C2H5SO4)3–H2O system is valid when M is changed from lanthanides into the title elements, the solubilities of the ethylsulphates of trivalent Y, Pm, Pu, Am and Cm in water at 288–318 K have been determined from the matrix. The solubilities of Y, Pm, Pu, Am and Cm ethylsulphates and of all the lanthanide ethylsulphates are given in the form of smoothing equations of the lg molality=A+B/T type. From the B parameters of the solubility equations the enthalpies of solution have been estimated. The crystallization behaviour of yttrium in the ethylsulphate system is between that of holmium and that of erbium.  相似文献   

14.
Dissolution of individual actinide oxides (Th, U, Pu, Np), or their mechanical mixtures, as well as of solid solutions U–Pu, U–Np, U–Am and U-Pu-Eu oxides in supercritical fluid carbon dioxide (SF-CO2) containing the complex of tri-n-butyl phosphate (TBP) with nitric acid (TBP–HNO3) has been investigated. The effect of the calcination temperature of solid solutions of dioxides on the separation of actinides during supercritical fluid extraction (SFE) has been studied as well. It was shown for the first time that milligram amounts of uranium dioxide could be quantitatively dissolved in (SF-CO2) containing the TBP–HNO3 complex and efficiently separated from Pu, Np, and Th during SFE of mechanical mixture of these oxides. On the contrary, both U and Pu are quantitatively dissolved in SF-CO2–TBP–HNO3 during SFE from solid solutions of U–Pu dioxide. An increase of the calcination temperature of the mixed U(IV)–Pu(IV) dioxide from 850 to 1200 °C has no influence on the relative extraction yield of these actinides during SFE. To cite this article: T. Trofimov et al., C. R. Chimie 7 (2004).

Résumé

Dissolution d’oxides d'actinides et extraction d’éléments dans le dioxide de carbone supercritique contenant le complexe tri-n-butylphosphate–acide nitrique. La dissolution d’oxydes de Th, U, Pu et Np, de leurs mélanges et de solutions solides U–Pu, U–Np, U–Am et U–Pu–Eu dans le dioxyde de carbone supercritique (CO2-SC) contenant le complexe tri-n-butyl phosphate–acide nitrique (TBP–HNO3) a été étudiée, et notamment l’effet de la température de calcination des solutions solides. On montre que quelques milligrammes de UO2 peuvent être dissous dans le système CO2-SC–TBP–HNO3 et être séparés de Pu, Np et Th en traitant un mélange d’oxydes. En revanche, U et Pu sont dissous dans la phase CO2-SC–TBP–HNO3 durant le traitement des solutions solides U(IV)–Pu(IV). Une augmentation de la température de calcination de 850 à 1200 °C de ces solutions solides n’a pas d’effet sur le rendement d’extraction des actinides. Pour citer cet article : T. Trofimov et al., C. R. Chimie 7 (2004).  相似文献   

15.
Extraction of actinides from aqueous nitric acid by three different heterocyclic dicarboxamides (2,6-pyridinedicarboxamide, 2,2′-bipyridine-6,6′-dicarboxamide and 1,10-phenanthroline-2,9-dicarboxamides) was studied. It was shown that all studied ligands extract actinides at different oxidation states (U(VI), Np(V), Pu(IV), Am(III), Cm(III)) from acidic solutions. All studied diamides extract Am(III) better than Cm(III). Et(pHexPh)ClPhen contains electron-withdrawing chlorine atoms at the positions 4 and 7 of the phenanthroline moiety (SFAm/Cm = 4–6) and possesses the highest separation factor Am(III)/Cm(III). The studied ligands possess high extraction ability to all actinides present in HLW and therefore they could be used for simultaneous extraction of actinides in the GANEX-type process.  相似文献   

16.
Intertidal coastal and estuarine sediments from 24 sites in the Irish Sea have been analyzed for99Tc,237Np,238Pu,239,240Pu and241Am. The237Np activity and239Pu/240Pu ratio were measured simultaneously by ICP-MS, and99Tc was determined by HR-ICP-MS which is ten times more sensitive than Q-ICP-MS.The activities of99Tc,237Np,239,240Pu and241Am were distributed over a wide range of 1.5–70.5, 0.01–13.3, 2.3–1589, 2.6–1894 Bq/kg, respectively. Activities of these radionuclides decreased exponentially with distance from the Sellafield source. The241Am/239,240Pu and237Np/239,240Pu ratios were almost constant with distance from the Sellafield. This result suggests that the distribution and behavior of Np and Pu are controlled by complicated factors such as the influence of transport, the variation with time of Np/Pu ratio in the Sellafield discharges and sedimentary mixing processes in the Irish Sea.  相似文献   

17.
Zusammenfassung Es wird eine Trennung von242Cm und241Am am Kationenaustauscher Dowex 50 W×8 mittels -Hydroxyisobutyratlösungen beschrieben, wobei Sm und Pm zur Markierung der Elutionspositionen von Cm und Am zugesetzt werden. Die Elemente werden in der Folge Sm–Cm–Pm–Am eluiert.Die Messung der -Aktivitäten mit Halbleiterdetektoren wurde an Tropf- und Molekularplatingproben vorgenommen.Aus etwa 2·10–6 g241Am, welches 400 Stdn. lang bestrahlt wurde, konnten etwa 4·10–9 g242Cm, entsprechend 99,5% der beobachteten Gesamtaktivität, gewonnen werden.
The separation of242Cm and241Am with -hydroxyisobutyric solutions on the ion exchange resin Dowex 50 W×8 is described. Sm and Pm are used as indicators in order to mark the elution positions of Cm and Am. The elements are eluted in the order Sm–Cm–Pm–Am.Drop- and molecular plating samples were prepared for measuring the -activities with semiconductor detectors.About 2·10–6 g241Am yielded on activation for a period of 400 hours 4·10–9 g242Cm corresponding to 99,5% of the observed total activity.


Mit 2 Abbildungen  相似文献   

18.
Americium and curium alloys with palladium and platinum containing up to 20% of actinide were prepared by the coupled reduction technique. The alloys obtained were investigated by X-ray, differential thermal analysis and metallography. Phase diagram sections for Pd–Am, Pd–Cm, Pt–Am and Pt–Cm systems have been constructed. Intermetallics Pt5An (An=243Am,244Cm,249Bk,249Cf), Ir2 249Bk and Rh3 239Bk were obtained as thin layers on the surfaces of metallic substrates. X-ray investigation has shown that Pt5An compounds have hexagonal structures of the Cu5Ca-type, Ir2Bk- cubic lattice of the Cu2Mg-type and Rh3Bk intermetallic has fcc lattice of the Cu3Au-type. The influence of intensive -decay of transplutonium nuclides on the crystal structure of the intermetallics prepared has been investigated.  相似文献   

19.
Depth profiles and inventories of237Np in sediment cores from the Ribble Estuary in the Irish Sea have been studied along with those of Pu isotopes,241Am and137Cs, to allow a more detailed look of anomalously high237Np content observed in this estuary previously. The comprehensive data obtained showed that the depth profiles of both237Np contents and237Np/239,240Pu activity ratios were clearly different from those of239,240Pu,241Am, and137Cs and their activity ratios. As much as 80–90% of237Np inventories (0.32–1.06 kBq/m2), found in three cores, were estimated to be derived from a source other than Sellafield, on the basis of comparison of the237Np/239,240Pu inventory ratio (0.65–1.74%) found in the Ribble Estuary cores with those (0.10–0.16%) in the Ravenglass Estuary cores.  相似文献   

20.
Adsorption experiments were performed to measure distribution coefficients of237Np(V),238Pu(IV) and241Am(III) for sedimentary sequential chemical extraction of the adsorbed radionuclides was carried out with water, CaCl2, KCl, NH2OH−HCl, K-oxalate and H2O2 solutions, to elucidate their dominant sorption mechanisms. The distribution coefficient of237Np was two orders of magnitude smaller than that of238Pu and241Am. Most of237Np adsorbed was extracted with CaCl2 solution and its sorption was controlled by a reversible ion exchange reaction. The adsorbed238Pu was mainly extracted with NH2OH−HCl+K-oxalate solution and its sorption was possibly controlled by irreversible reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号