首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zhao  Qianqian  Zhang  Liuxue  Wang  Xiulian  Jia  Xu  Xu  Panpan  Zhao  Meiyan  Dai  Ruikun 《Transition Metal Chemistry》2019,44(8):789-797
Transition Metal Chemistry - Here, we prepared a series of Fe-based metal organic frameworks (MOFs), including MIL-53(Fe), NH2-MIL-53(Fe), MIL-88B(Fe) and NH2-MIL-88B(Fe), via an oil bath process...  相似文献   

2.
Polyaniline (PANI)/MIL-88A(Fe) (Px@M88) composites were constructed through a simple one-pot hydrothermal method. The photocatalytic and photo-Fenton activities of Px@M88 composites toward reduction of Cr(VI) and degradation organic pollutants were explored by white light irradiation. PANI, as a conductive polymer, can improve MIL-88A(Fe)’s conductivity and the efficiency of photogenerated e–h+ pair separation. In the presence of H2O2, a photo-Fenton reaction occured to boost the degradation efficiency of organic pollutants like bisphenol A. In addition, P9@M88 showed excellent recycling and stability in cycling experiments. Finally, a possible reaction mechanism for photocatalytic degradation was proposed and verified by X-ray photoelectron spectroscopy and electron spin resonance determination and electrochemical characterizations.  相似文献   

3.
刘建芳  冉真真  曹琪岩  季生福 《催化学报》2021,42(12):2254-2264
甲醇选择氧化合成甲酸甲酯是获得高附加值甲醇下游化学品的最具吸引力的催化反应工艺之一.目前,甲醇选择氧化的研究大多为气相催化反应,存在反应温度较高和产物选择性较低的难题.甲醇液相选择氧化过程的反应温度较低,反应条件易于控制,产物选择性相对较高.然而,以氧气作为氧化剂的甲醇液相选择氧化反应,有时难以脱离反应体系的爆炸极限.以H2O2为氧化剂的甲醇液相选择氧化反应,可以在温和反应条件下实现甲醇催化选择氧化.含Fe活性组分的催化剂对醇类液相选择氧化具有很好的催化性能,金属有机框架材料(MOFs)在三维空间中具有均匀分布的酸位等催化活性位,因此,含Fe的MOFs催化剂是兼具有氧化还原活性和酸性的双功能催化剂,并且引入另外一些催化活性组分时可以改善催化剂的反应性能.本文以Fe3+和Co2+为金属离子,通过简单的一锅水热法合成了一系列不同Fe/Co摩尔比的MIL-88B(Fex,Co1–x)双功能催化剂,采用X射线粉末衍射、扫描电镜(SEM)、高分辨透射电镜(HRTEM)、傅里叶变换红外光谱、X射线光电子能谱、氮气吸附-脱附和电感耦合等离子体质谱等手段表征了催化剂的结构,研究了Fe和Co催化活性组分在甲醇液相选择氧化一步合成甲酸甲酯反应中的协同作用,提出了甲醇液相H2O2氧化一步合成甲酸甲酯的可能催化反应机理.SEM和HRTEM测试结果表明,MIL-88B(Fex,Co1–x)催化剂为平均长度400–600 nm,宽度100–150 nm的针状形态,Fe和Co元素的分布比较均匀,Co掺杂没有改变MIL-88B(Fex,Co1–x)的拓扑结构.X射线光电子能谱分析结果表明从Co到Fe的供电子效应,Co的引入可以调节Fe中心的电子环境,Fe和Co具有协同催化作用.通过甲醇液相氧化性能测试发现,MIL-88B(Fe0.7,Co0.3)表现出最优的催化性能,使用0.5当量的H2O2为氧化剂,在80℃下反应60 min后,甲醇转化率为34.8%,甲酸甲酯选择性由50.7%(单金属Fe)提高至67.6%.且经过四次催化循环后,MIL-88B(Fe0.7,Co0.3)的催化活性没有明显降低.催化反应机理研究表明,Fe是吸附活化H2O2进而选择氧化甲醇的主要活性中心,H2O2首先在Fe3+上吸附和活化,甲醇通过氢键作用吸附在MOF的骨架O原子上,被逐步氧化为甲酸,然后甲酸与剩余甲醇在Lewis酸性位点Fe3+和Co2+上反应生成甲酸甲酯;Co的掺杂加速了Fe(Ⅲ)/Fe(Ⅱ)的电子转移,提供了更多的配位不饱和金属位点,增强了对中间产物甲酸的吸附,促进了甲酸向甲酸甲酯转化,从而提高产物选择性.  相似文献   

4.
通过简单溶剂热法制备了一种新型复合光催化剂BiVO_4/M IL-53(Fe);运用XRD、SEM/EDS、FT-IR、N_2吸附-脱附和UV-vis DRS等手段对其进行表征,并对其光催化降解RhB活性进行了研究,提出了相应的光催化降解RhB的可能机理。结果表明,相较于单一BiVO_4材料,复合催化剂的比表面积增大,且其光催化效率相较于纯BiVO_4和MIL-53(Fe)也有了较大的提高;其中,BF-2复合材料的光催化活性最高,分别约为纯MIL-53 (Fe)和BiVO_4的5. 2倍和8. 1倍。同时,BiVO_4/MIL-53(Fe)复合光催化剂经过四次循环实验后,仍能保持较稳定的光催化活性和结构。  相似文献   

5.
可以通过简单地控制乙酸浓度的方法,在相似的水热合成条件下合成2种同一家族的金属有机框架材料(MOFs):MIL-88B(Cr)和MIL-101(Cr)。在相对较低的乙酸浓度下,可以得到平均粒径为100 nm的MIL-101(Cr),并拥有很高的BET比表面积(3543 m^2·g^-1)。而在相对较高的乙酸浓度下,则可得到另一种具有“呼吸”特性结构的MOF——MIL-88B(Cr)。利用粉末X射线衍射、扫描电镜、N2吸附-脱附分析、热重分析等对它们的结构、形貌、孔隙率等性质做了详细的分析。  相似文献   

6.
A series of organically modified iron(III) terephthalate MIL-88B and iron(III) 4,4'-biphenyl dicarboxylate MIL-88D flexible solids have been synthesized and characterized through a combination of X-ray diffraction, IR spectroscopy, and thermal analysis (MIL stands for Material from Institut Lavoisier). The swelling amplitude of the highly flexible MOFs tuned by introducing functional groups onto the phenyl rings shows a clear dependence on the steric hindrance and on the number of groups per aromatic ring. For instance, while the introduction of four methyl groups per spacer in dried MIL-88B results in a large permanent porosity, introducing two or four methyl groups in MIL-88D allows an easier pore opening in the presence of liquids without drastically decreasing the swelling magnitude. The influence of the degree of saturation of the metal center and the nature of the solvent on the swelling is also discussed. Finally, a computationally assisted structure determination has led to a proposal of plausible structures for the closed (dried) and open forms of modified MIL-88B and MIL-88D and to evaluation of their framework energies subject to the nature of the functional groups.  相似文献   

7.
郑笑笑  齐思慧  曹彦宁  沈丽娟  区泽棠  江莉龙 《催化学报》2021,42(2):279-287,后插18-后插20
硫化氢(H2S)广泛存在于以煤、石油和天然气等为原料的化工生产过程中,不仅腐蚀管道和设备,而且还会对健康和环境造成危害.因此,高效脱除H2S已成为工业废气减排的重点.在各种方法中,H2S选择性氧化技术(H2S+(1/2)O2→(1/n)Sn+H2O)由于具有设备需求低、反应不受热力学平衡限制、理论转化率可达100%等优点展现出了巨大的应用前景.实现这一过程的关键在于发展高效稳定的催化剂.作为一类新兴的多孔材料,金属-有机骨架材料(MOFs)由于其独特的结构和性质吸引了广泛的研究兴趣.与传统的脱硫材料相比,MOFs的优势主要体现在:1)高度分散的金属原子可作为催化活性中心;2)超高比表面积和规则的孔结构有利于反应物与活性位点之间的接触;3)结构可调变性高,通过在合成过程中有目的地引入配体或调控剂可产生额外的活性位点,满足特定催化的需求.基于以上特点可知,MOFs是一类有潜力的催化剂,但目前将其应用于H2S选择性氧化领域的研究尚处于起步阶段.本文以典型的铁基MOFs MIL-53(Fe)为研究对象,在制备MIL-53(Fe)过程中添加乙酸(HAc)作为调控剂,通过控制HAc的量,得到一系列具有不同形貌的MIL-53(Fe)-xH样品,并将其应用于H2S选择性氧化反应.SEM结果表明,在MIL-53(Fe)的合成过程中引入乙酸可以显著影响样品的形貌和尺寸.活化前后样品的XRD结果表明,HAc具有与对苯二甲酸(H2BDC)相似羧基基团,二者均可与Fe–O团簇配位.此外,TG-DSC结果证实,随着HAc加入量的提高,与Fe^3+形成配位的HAc/H2BDC比值随之增加.FT-IR和Raman结果进一步证明HAc成功地配位到MIL-53(Fe)的框架中,并且参与配位的HAc可通过真空活化移除从而暴露出Fe^3+不饱和位点.H2S选择性氧化测试表明,MIL-53(Fe)-xH的脱硫活性随着HAc含量的提高先增加然后降低,其中MIL-53(Fe)-5H活性最优.此外,MIL-53(Fe)-5H催化剂在连续运行55 h后仍能保持100%H2S转化率和86%硫选择性,性能远优于传统的Fe2O3催化剂.吡啶原位红外光谱结果表明,HAc的引入可以产生额外的Lewis酸性位点(LAS),LAS含量的不同是造成催化剂活性差异的主要原因.  相似文献   

8.
Crystals of MIL‐88B‐Fe and NH2‐MIL‐88B‐Fe were prepared by a new rapid microwave‐assisted solvothermal method. High‐purity, spindle‐shaped crystals of MIL‐88B‐Fe with a length of about 2 μm and a diameter of 1 μm and needle‐shaped crystals of NH2‐MIL‐88B‐Fe with a length of about 1.5 μm and a diameter of 300 nm were produced with uniform size and excellent crystallinity. The possibility to reduce the as‐prepared frameworks and the chemical capture of carbon monoxide in these materials was studied by in situ ultrahigh vacuum Fourier‐transform infrared (UHV‐FTIR) spectroscopy and Mössbauer spectroscopy. CO binding occurs to unsaturated coordination sites (CUS). The release of CO from the as‐prepared materials was studied by a myoglobin assay in physiological buffer. The release of CO from crystals of MIL‐88B‐Fe with t1/2=38 min and from crystals of NH2‐MIL‐88B‐Fe with t1/2=76 min were found to be controlled by the degradation of the MIL materials under physiological conditions. These MIL‐88B‐Fe and NH2‐MIL‐88B‐Fe materials show good biocompatibility and have the potential to be used in pharmacological and therapeutic applications as carriers and delivery vehicles for the gasotransmitter carbon monoxide.  相似文献   

9.
Pore size plays a critical role in determining the performance of metal-organic frameworks (MOFs) in catalysis, sensing, and gas storage or separation. However, revealing the pore-size/property relationship remains extremely challenging because ideal structure models possessing different pore sizes but having the same components are lacking. In this work, a solvent-coordination directed structure swelling method was developed for modulating the ratio between the large and narrow pore phases of a flexible MOF, MIL-88B . Pore-size-dependent gas sensitivity and selectivity were studied for the first time in the MIL-88B samples. The optimized MIL-88B-20 % sample showed one of the best sensing performances among all the reported MOF-based H2S-sensing materials. This work not only provides a method to synthesize ideal structure models for revealing the relationship between pore-size and properties, but also may inspire the development of high-performance gas sensing materials.  相似文献   

10.
The porous nano-sized metal–organic framework (nanoMOF) and its proper surface modification could greatly promote the drug loading capability and introduce biocompatibility, biodegradability, and targeting functions into nano-drug delivery systems. Herein, the HACD@ADA-PA/MIL-101_NH2 (Fe)-P nanoparticle was successfully fabricated through supramolecular and coordination interactions from three building blocks, including hierarchically porous MIL-101_NH2 (Fe)-P nanoMOF, phosphite-modified adamantane (ADA-PA), and β-cyclodextrin (β-CD)-modified hyaluronic acid (HACD). The obtained HACD@ADA-PA/MIL-101_NH2 (Fe)-P nanoparticle was nano-sized and highly stable in physiological fluids. The porous structure of HACD@ADA-PA/MIL-101_NH2 (Fe)-P nanoparticle could effectively load the commercial chemotherapeutic drug doxorubicin (DOX) with an encapsulation rate of 41.20 % and a loading rate of 48.84 %. The obtained drug-loaded HACD@ADA-PA/MIL-101_NH2 (Fe)-P@DOX nanoparticle was pH-sensitive and relatively stable at neutral condition (pH 7.2) but could release DOX in a controlled way in subacid solution at pH 5.7. The simulated in vitro DOX release experiment signified that the HACD@ADA-PA/MIL-101_NH2 (Fe)-P@DOX nanoparticle could realize the controlled release of DOX in tumor issues.  相似文献   

11.
通过溶剂热法制备了性质稳定的金属有机框架材料MIL-101(Fe),并用于吸附去除水中的微囊藻毒素-LR。采用电子显微镜、傅立叶变换红外光谱(FT-IR)、Zeta电位和N_2吸附-脱附等方法对制备的纳米材料进行了表征。MIL-101(Fe)具有多孔结构和较高的比表面积(375.2 m~2/g),尺寸约为500 nm。考察了pH值、离子强度、温度、吸附时间、浓度等参数对吸附剂吸附能力的影响。结果表明,静电作用和配位作用是主要的作用机理。MIL-101(Fe)对微囊藻毒素-LR的吸附速度很快(20 min内达到吸附平衡),吸附过程符合准二级动力学模型;MIL-101(Fe)对微囊藻毒素-LR表现出良好的吸附性能,其最大吸附量为256.4 mg/g。溶液中存在的腐植酸对MIL-101(Fe)的吸附性能产生一定的影响。受腐殖酸、盐类的影响,相同条件下MIL-101(Fe)对江水中微囊藻毒素-LR的吸附性能有所下降,但仍可达到68.1 mg/g。因此,该方法简便、高效,适用于快速除去污染水体中的微囊藻毒素-LR。  相似文献   

12.
利用酰胺化反应在2,2,6,6-四甲基哌啶-1-氧自由基(TEMPO)分子的4位引入乙酰氨基和异烟酰氨基分别获得Acet-TEMPO和isoNTA-TEMPO分子.将Acet-TEMPO、 isoNTA-TEMPO和TEMPO分别与MIL-101(Fe)组成共催化体系,以苯甲醇选择性氧化为苯甲醛做模型反应,研究上述3种催化体系的催化性能.催化结果表明3种催化体系的催化活性顺序为:MIL-101(Fe)/isoNTA-TEMPO MIL-101(Fe)/Acet-TEMPOMIL-101(Fe)/TEMPO.通过对比实验和吸附实验表明isoNTA-TEMPO的吡啶官能团与MIL-101(Fe)的Fe簇配位作用是提高体系催化性能的关键因素.MIL-101(Fe)/isoNTA-TEMPO催化体系对各种芳香醇均表现出较好的催化性能,且催化剂能循环回收利用.  相似文献   

13.
Porous nanosized metal–organic frameworks (MOFs) are becoming possible candidates as drug-delivery nanocarriers for their versatile porous structures and large loadings of drugs. However, controlling synthesis of MOFs with uniform morphology, good biocompatibility and targeting drug delivery is still a challenge, which greatly limits their clinical applications. Herein, a multifunctional nano-sized drug-delivery material MIL-101(Fe)@FU@FA with a uniform particle size about 500 nm was successfully synthesized for targeting therapeutic purposes. The targeting reagent folic acid (FA) molecules are connected on the surface of 5-FU-loaded nanoparticle MIL-101(Fe)-NH2 by a covalent conjugation. Cytotoxicity tests showed that the synthesized nanoparticles are biocompatible and can significantly inhibit cell proliferation on SMMC-7721 cells compared with MIL-101(Fe)@FU and free 5-FU. The cell metastasis and invasion experiments proved that the nanoparticles had a good anti-metastasis ability to tumor cells. Mechanistically, MIL-101(Fe)@FU@FA induces apoptosis of SMMC-7721 cells and block cell cycle progression in the G2/M phase. Taken together, the drug-loaded nanoparticles MIL-101(Fe)@FU@FA have the effect of targeting and sustained release to achieve the therapeutic effect.  相似文献   

14.
15.
采用水热法,将MIL-101负载到预处理过的P25表面,制得MIL-101/P25复合光催化材料,通过X射线衍射(XRD)、傅里叶变换红外(FTIR)、低温N2物理吸附-脱附(BET)、热重(TG)、场发射透射电镜(FETEM)和光致发光光谱(PL)等对催化剂进行结构表征,同时考察MIL-101及复合材料的稳定性,并且提出协同因子指标来定量评价复合带来的协同效应。结果表明MIL-101呈片状,与P25部分结合。复合后,MIL-101的稳定性得到提高。在适当的配比下,复合具有协同效应,当Cr(NO3)3·9H2O与P25的物质的量之比为1∶1时,复合材料对罗丹明B的可见光催化活性最高,协同因子达到1.64。复合材料对无色有机污染物水杨酸同样表现出良好的光催化效果。  相似文献   

16.
Metal-organic frameworks (MOFs), which have become popular in recent years as excellent carriers of drugs and biomimetic materials, have provided new research ideas for fighting pathogenic bacterial infections. Although various antimicrobial metal ions can be added to MOFs with physical methods, such as impregnation, to inhibit bacterial multiplication, this is inefficient and has many problems, such as an uneven distribution of antimicrobial ions in the MOF and the need for the simultaneous addition of large doses of metal ions. Here, we report on the use of MIL-101(Fe)@Ag with efficient metal-ion release and strong antimicrobial efficiency for co-sterilization. Fe-based MIL-101(Fe) was synthesized, and then Ag+ was uniformly introduced into the MOF by the substitution of Ag+ for Fe3+. Scanning electron microscopy, powder X-ray diffraction (PXRD) Fourier transform infrared spectroscopy, and thermogravimetric analysis were used to investigate the synthesized MIL-101(Fe)@Ag. The characteristic peaks of MIL-101(Fe) and silver ions could be clearly seen in the PXRD pattern. Comparing the diffraction peaks of the simulated PXRD patterns clearly showed that MIL-101(Fe) was successfully constructed and silver ions were successfully loaded into MIL-101(Fe) to synthesize an MOF with a bimetallic structure, that is, the target product MIL-101(Fe)@Ag. The antibacterial mechanism of the MOF material was also investigated. MIL-101(Fe)@Ag exhibited low cytotoxicity, so it has potential applications in the biological field. Overall, MIL-101(Fe)@Ag is an easily fabricated structurally engineered nanocomposite with broad-spectrum bactericidal activity.  相似文献   

17.
Superior catalytic performance for selective 1,3-butadiene (1,3-BD) hydrogenation can usually be achieved with supported bimetallic catalysts. In this work, Pt−Co nanoparticles and Pt nanoparticles supported on metal–organic framework MIL-100(Fe) catalysts (MIL=Materials of Institut Lavoisier, PtCo/MIL-100(Fe) and Pt/MIL-100(Fe)) were synthesized via a simple impregnation reduction method, and their catalytic performance was investigated for the hydrogenation of 1,3-BD. Pt1Co1/MIL-100(Fe) presented better catalytic performance than Pt/MIL-100(Fe), with significantly enhanced total butene selectivity. Moreover, the secondary hydrogenation of butenes was effectively inhibited after doping with Co. The Pt1Co1/MIL-100(Fe) catalyst displayed good stability in the 1,3-BD hydrogenation reaction. No significant catalyst deactivation was observed during 9 h of hydrogenation, but its catalytic activity gradually reduces for the next 17 h. Carbon deposition on Pt1Co1/MIL-100(Fe) is the reason for its deactivation in 1,3-BD hydrogenation reaction. The spent Pt1Co1/MIL-100(Fe) catalyst could be regenerated at 200 °C, and regenerated catalysts displayed the similar 1,3-BD conversion and butene selectivity with fresh catalysts. Moreover, the rate-determining step of this reaction was hydrogen dissociation. The outstanding activity and total butene selectivity of the Pt1Co1/MIL-100(Fe) catalyst illustrate that Pt−Co bimetallic catalysts are an ideal alternative for replacing mono-noble-metal-based catalysts in selective 1,3-BD hydrogenation reactions.  相似文献   

18.
Metal-organic framework MIL-100(Fe) and g-C3N4 heterojunctions (MG-x, x = 5%, 10%, 20%, and 30%, x is the mass fraction of MIL-100(Fe) in the hybrids) were facilely fabricated through ball-milling and annealing, and characterized by powder X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric analysis, transmission electron microscopy, UV-visible diffuse-reflectance spectrometry, and photoluminescence emission spectrometry. The photocatalytic activities of the series of MG-x heterojunctions toward Cr(VI) reduction and diclofenac sodium degradation were tested upon irradiation with simulated sunlight. The influence of different organic compounds (ethanol, citric acid, oxalic acid, and diclofenac sodium) as hole scavengers and the pH values (2, 3, 4, 6, and 8) on the photocatalytic activities of the series of MG-x heterojunctions was investigated. MG-20% showed superior photocatalytic Cr(VI) reduction and diclofenac sodium degradation performance than did the individual MIL-100(Fe) and g-C3N4 because of the improved separation of photoinduced electron-hole charges, which was clarified via photoluminescence emission and electrochemical data. Moreover, the MG-x exhibited good reusability and stability after several runs.  相似文献   

19.
Herein, a novel polyaniline-co-polyindole functionalized magnetic porous carbon derived from MIL-53(Fe) was prepared and employed as an excellent nano-adsorbent to preconcentrate trace amounts of nitro-phenols in water and wastewater samples. Briefly, magnetic MIL-53(Fe) was synthesized by the addition of magnetite nanoparticles, terephthalic acid, and FeCl3 to the reaction medium. The magnetic MIL-53(Fe) was pyrolyzed under nitrogen protection to obtain a magnetic porous carbon nanocomposite, and finally, the nanomaterial was functionalized with polyaniline-co-polyindole via oxidation polymerization. The obtained nano-adsorbent was characterized via X-ray diffraction, Fourier-transform infrared spectroscopy, vibrating sample magnetometry, and transmission and scanning electron microscopies. After that, the fabricated nano-material was utilized as an excellent nano-adsorbent for the preconcentration of trace nitro-phenols (2-nitrophenol, 4-nitrophenol, and 2,4-dinitrophenol) in environmental water, and wastewater samples. The detection limits were obtained from 0.1 to 0.15 μg/L after performing the optimization process. The new method was in the range of 0.4–300 μg/L. The proposed method exhibited a good precision from 3.2% to 9.6% for within-day assay, and 5.2%–13.2% for between-day assay at three concentration levels (1, 50, and 250 μg/L). Eventually, this method was utilized to preconcentrate/determine the target analytes in three water, and wastewater samples, satisfactory (relative standard deviations, 5.4%–9.3%; relative recovery, 88%–109%).  相似文献   

20.
Nano (Fe)MIL-101 particles were grafted on the short carbon fibers (SCFs) by in situ growth method to prepare (Fe)MIL-101@SCFs. The flame-retarded composites of epoxy resin (EP) were fabricated with combination of (Fe)MIL-101@SCFs and ammonium polyphosphate (APP). The composites showed good flame retardancy, smoke suppression, and mechanical properties simultaneously. The main heat release rate peak of the flame-retarded composites was reduced and delayed evidently in comparison with pristine EP. The high amount of residual char with coherent and dense structure was formed owing to the catalytic char formation of (Fe)MIL-101 as well as the strengthening action of SCF. The improvement in mechanical properties of the flame-retarded composite was due to the reinforcement effects of (Fe)MIL-101@SCFs and its action of interfacial adjustment. This research solved the contradiction between the flame retardancy and mechanical properties of EP, and proposed a new method to prepare the mechanically reinforced and flame retardant EP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号