首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dielectric chiral metasurfaces can generate harmonic waves with high efficiency and strong circular dichroism (CD), when they are supported by metallic substrates. Numerical results show that the second-harmonic generation (SHG) efficiency of about 10−3% for a peak pump intensity of about 5 GW cm−2 can be achieved in the blue-UV, and the SHG CD reaches up to about 1.8, from a metasurface of Z-shaped lithium niobate nanoantenna array supported by gold substrate. Highly efficient and strong circular dichroic nonlinear responses are attributed to the plasmon-assisted local field enhancement in the dielectric chiral nanoantennae adjacent to the metallic substrate.  相似文献   

2.
《Physics letters. A》2020,384(19):126398
Plasmonic circular dichroism (CD) effect has been drawn great attention increasingly for its wide application in the fields of bio-sensing, biological detection, pharmaceuticals, and analytical chemistry. In this paper, we propose a chiral metasurface (CMS) to achieve strong multi-band CD effect at optical frequency. The designed CMS is composed of a periodic array of conjugated bilayer twisted-semicircle nanostructures. The numerical simulation results show that the CMS can produce strong multi-band CD effect due to the different coupling resonance modes under the excitations of left-handed circular polarization (LCP) light and right-handed circular polarization (RCP) light. It is shown that the chiral-selective absorption peaks can reach 89.4% and 95% for LCP light, 79% and 78.2% for RCP light, and the maximum CD is about 0.69 and −0.61 at 198.75 THz and 352.25 THz, 0.69 and −0.54 at 291.75 THz and 402.25 THz, respectively. The mechanism of the giant CD effect of the CSM has been revealed by analyzing the coupling mode of electric dipoles on the top and bottom layer through surface current distributions. Furthermore, the geometric parameter dependences of CD effect in the proposed CMS have been also studied numerically. The present results will guide the design of plasmonic chiral nanostructures for enhancing the CD effect.  相似文献   

3.
The second-harmonic generation (SHG) circular dichroism in the light of reflection from chiral films of tripod-like chiral molecules is investigated.The expressions of the second-harmonic generation circular dichroism are derived from our presented three-coupled-oscillator model for the tripod-like chiral molecules.Spectral dependence of the circular dichroism of SHG from film surface composed of tripod-like chiral molecules is simulated numerically and analysed.Influence of chiral parameters on the second-harmonic generation circular dichroism spectrum in chiral films is studied.The result shows that the second-harmonic generation circular dichroism is a sensitive method of detecting chirality compared with the ordinary circular dichroism in linear optics.All of our work indicates that the classical molecular models are very effective to explain the second-harmonic generation circular dichroism of chiral molecular system.The classical molecular model theory can give us a clear physical picture and brings us very instructive information about the link between the molecular configuration and the nonlinear processes.  相似文献   

4.
Inspired by the chiral structure from mode interaction, a chiral terahertz metamaterial and its complementary structure with the coexistence of asymmetric transmission and circular dichroism response are designed. The asymmetric transmission happens in the presence of electric and magnetic modes perpendicular to each other, resulting from intrinsic chirality under normal incidence. Circular dichroism exists in the presence of electric and magnetic modes parallel to each other under oblique incidence because of extrinsic chirality. Both asymmetric transmission and circular dichroism are enhanced by complementary structures, benefitting from the coupling between adjacent units. The maximum of chiral parameter κ can achieve 450, which is one hundred times higher than previously reported. The chiral response can be tuned by the incident angle and is sensitive to the environmental refractive index. The results highlight the potential applications of these metamaterials in chiral sensing and polarization transformation devices.  相似文献   

5.
In the field of optoelectronics, circular dichroism (CD) has caused great research interest because it is widely used in imaging and biosensing. A new method for dynamically controlling terahertz (THz) CD in metamaterials is proposed. By introducing chirality and graphene to metamaterials, a pair of chiral structures with completely opposite responses to left-handed circularly polarized (LCP) waves and right-handed circularly polarized (RCP) waves are designed. The influencing factors of CD are explored, including the gap of the structure, the linewidth of graphene, and the Fermi level of graphene. The largest CD (ΔR) is 77%. The CD can be actively modulated in a modulation range of 39–77% and the modulation depth is up to 38%. In addition, two-channel and four-channel chiral metasurfaces for near-field imaging are designed in this way. Good imaging effects and on (“1”) or off (“0”) effects of the multichannel metasurface are demonstrated. This work provides new ideas for the design of tunable metasurfaces and promotes the application of metasurfaces in THz dynamic imaging.  相似文献   

6.
郭娟娟  汪茂胜  黄万霞 《中国物理 B》2017,26(12):124211-124211
A three-dimensional chiral metamaterial with four-fold rotational symmetry is designed, and its optical properties are investigated by numerical simulations. The results show that this chiral metamaterial has the following features: high polarization conversion, perfect circular dichroism, and asymmetric transmission of circularly polarized light. A comparison of the results of chiral metamaterials without and with weak coupling between the constituent nanostructures enables us to confirm that the optical properties of our proposed nanostructure are closely related to the coupling between the single nanoparticles. This means that the coupling between nanoparticles can enhance the polarization conversion, circular dichroism, and asymmetric transmission. Due to the excellent optical properties, our metamaterial might have potential applications in the development of future multi-functional optical devices.  相似文献   

7.
Dark‐field illumination is shown to make planar chiral nanoparticle arrangements exhibit circular dichroism in extinction, analogous to true chiral scatterers. Single oligomers, consisting rotationally symmetric arrangements of gold nanorods, are experimentally observed to exhibit circular dichrosim at their maximum scattering with strong agreement to numerical simulation. A dipole model is developed to show that this effect is caused by a difference in the projection of a nanorod onto the handed orientation of electric fields created by a circularly polarized dark‐field normally incident on a glass‐air interface. Owing to this geometric origin, the wavelength of the peak chiral response is experimentally shown to shift depending on the separation between nanoparticles. All presented oligomers have physical dimensions less than the operating wavelength, and the applicable extension to closely packed planar arrays of oligomers is demonstrated to amplify the magnitude of circular dichroism. This realization of strong chirality in these oligomers demonstrates a new path to engineer optical chirality from planar devices using dark‐field illumination.  相似文献   

8.
Bao-Qin Lin 《中国物理 B》2022,31(3):34204-034204
An ultra-wideband 2-bit coding metasurface is designed for radar cross-section (RCS) reduction. The design process is presented in detail, in which a polarization conversion metasurface (PCM) is first proposed. The proposed PCM can realize ultra-wideband circular polarization (CP) maintaining reflection. Moreover, Pancharatnam—Berry (PB) phase will be generated in the co-polarized reflection coefficient by rotating the metallic patches in its unit cells. Thus, based on the PCM, the four coding elements of a 2-bit coding metasurface are constructed using PB phase, and an ultra-wideband PB 2-bit coding metasurface is proposed according to an appropriate coding sequence. The simulated and experimental results show that the coding metasurface has obvious advantages of wideband and polarization-insensitivity. Compared to a metallic plate of the same size, it can achieve more than 10 dB RCS reduction in the frequency band from 9.8 GHz to 42.6 GHz with a relative bandwidth of 125.2% under normal incidence with arbitrary polarizations.  相似文献   

9.
A sizable enhancement of the circular dichroism in photoelectron spectroscopy has been measured and computed for the metal complex Δ-cobalt(III) tris-acetylacetonate highest occupied molecular orbital state in the region of the Co 3p→3d Fano resonance. In the resonance the dichroism reaches the maximum value of 5% and even changes its sign as compared to the direct photoionization channel. We ascribe this enhancement to electron correlation processes, namely, with the coupling between discrete excitations and the continuum, which is correctly described in the time dependent density functional theory (TDDFT) framework. These findings open new physical aspects of photoelectron circular dichroism that now can be interpreted not only via the simple direct ionization, but also through more complex electron correlation processes.  相似文献   

10.
Since Metasurfaces are playing important roles in optical devices such as optical polarizers and detectors, in this article, we have proposed a novel shape of nano aperture antenna for mid-infrared applications such as bio-sensing and other potential optical applications based on plasmonic characteristic of the gold layer over the SiN substrate. The transmittance tensor is obtained for vertical and horizontal linear polarization and base on boundary condition of the metasurface, the circular polarizations are extracted which are confirmed by the electric field distributions. We have shown by the parametric studies that the phase difference is altered by the gap and slot width and so with the dimension modification, we are able to achieve circular polarizer in the optical range. The biological materials with a thickness of 80 nm have then been placed over the metasurface layer and the figures of merits have been obtained. We have revealed that when the circular polarization is osculated to the metasurface at a special frequency the linear polarization is obtained in the other side of the metasurface. The nano aperture has been modeled and the finite difference time domain calculations are performed in CST Microwave Studio as a commercial full wave simulation software.  相似文献   

11.
阳泽健  胡德骄  高福华  侯宜栋 《中国物理 B》2016,25(8):84201-084201
The circular dichroism(CD) signal of a two-dimensional(2D) chiral meta-surface is usually weak, where the difference between the transmitted(or reflected) right and left circular polarization is barely small. We present a general method to enhance the reflective CD spectrum, by adding a layer of reflective film behind the meta-surface. The light passes through the chiral meta-surface and propagates towards the reflector, where it is reflected back and further interacts with the chiral meta-surface. The light is reflected back and forth between these two layers, forming a Fabry–Perot type resonance,which interacts with the localized surface plasmonic resonance(LSPR) mode and greatly enhances the CD signal of the light wave leaving the meta-surface. We numerically calculate the CD enhancing effect of an L-shaped chiral meta-surface on a gold film in the visible range. Compared with the single layer meta-surface, the L-shaped chiral meta-surface has a CD maximum that is dramatically increased to 1. The analysis of reflection efficiency reveals that our design can be used to realize a reflective circular polarizer. Corresponding mode analysis shows that the huge CD originates from the hybrid mode comprised of FP mode and LSPR. Our results provide a general approach to enhancing the CD signal of a chiral meta-surface and can be used in areas like biosensing, circular polarizer, integrated photonics, etc.  相似文献   

12.
高喜  余行阳  曹卫平  姜彦南  于新华 《中国物理 B》2016,25(12):128102-128102
An ultrathin micro-split Jerusalem-cross metasurface is proposed in this paper, which can efficiently convert the linear polarization of electromagnetic(EM) wave into the circular polarization in ultra-wideband. By symmetrically employing two micro-splits on the horizontal arm(in the x direction) of the Jerusalem-cross structure, the bandwidth of the proposed device is significantly extended. Both simulated and experimental results show that the proposed metasurface is able to convert linearly polarized waves into circularly polarized waves in a frequency range from 12.4 GHz to 21 GHz, with an axis ratio better than 1 d B. The simulated results also show that such a broadband and high-performance are maintained over a wide range of incident angle. The presented polarization converter can be used in a number of areas, such as spectroscopy and wireless communications.  相似文献   

13.
In this paper, an ultra-wideband chirality selective metastructure absorber is proposed that enables differential absorption and reflection of circularly polarized waves in the terahertz (THz) range. The structure achieves circular dichroism (CD) by using asymmetrically split metal rings as fundamental meta-atoms. Most critically, the high impedance surface and air-resonant cavities are inserted separately in the meta-atoms and dielectric substrate to enhance CD and broaden the bandwidth of absorption. The metastructure absorber can achieve more than 90% absorption of right circularly polarized waves at 0.675–1.244 THz, and it can maintain more than 90% reflection of left circularly polarized waves at 0.607–1.229 THz without changing the direction of rotation. Besides, its CD can reach more than 80% at 0.687–1.213 THz with a relative bandwidth of 55.3%. Spin-selective absorption, which is closely related to breaking chiral symmetry, is investigated through power loss distribution, wide-angle incidence, and scan parameter optimization. The proposed strategy is further validated in the THz band, and the polarization selection and manipulation techniques can be applied to chiral sensing/radio-thermometry, circular polarization detectors/lasers, and molecular spectroscopy.  相似文献   

14.
李文惠  张介秋  屈绍波  沈杨  余积宝  范亚  张安学 《物理学报》2016,65(2):24101-024101
本文通过设计出一种反射型极化旋转超表面,在8—12 GHz频域内实现高效的极化旋转,并将其加载于微带缝隙天线下方构成新型的极化旋转超表面天线,利用超表面的90°极化旋转效应,成功实现了天线的圆极化辐射调制.仿真与实验结果表明:圆极化天线的中心工作频率为GHz,阻抗带宽为8.3—10 GHz.当微带缝隙天线与极化旋转超表面的间距H=4.5mm时,天线在8.3—8.8 GHz频带内实现了圆极化辐射;当mm时,天线在8.8—9.3 GHz频带内实现了圆极化辐射;当=8mm时,天线在9.3—10 GHz频带内实现了圆极化辐射.实验结果与仿真结果相符,证明了此种设计方法的有效性,也为微带缝隙天线的圆极化设计提供了一种新的途径.  相似文献   

15.
Explicit expressions for the helical twisting power of a chiral dopant in the nematic phase have been obtained in the mean field approximation taking into account chiral dispersion intermolecular interactions. The results of the theory enable one to explain a correlation between the signs of helical twisting power and circular dichroism of selected electronic transitions which have recently been established experimentally for some mono- and bis-aminoantroquinones. Helical twisting power is proportional to the pseudoscalar parameter that specifies the chirality of the dopant molecule in terms of its dipole and quadrupole matrix elements. This expression is simplified for a special class of molecules in which chirality is induced by a perturbing achiral group into an achiral skeleton. In this case both helical twisting power and circular dichroism are approximately proportional to some simple pseudoscalar functions that specify the location of the achiral perturbing group with respect to the symmetry planes of the unperturbed achiral skeleton. Simple sector rules have been proposed to determine the sign change of the helical twisting power associated with the change of location of the perturbing group.  相似文献   

16.
Nature provides impressive examples of chiral photonic crystals, with the notable example of the cubic so-called srs network (the label for the chiral degree-three network modeled on SrSi2) or gyroid structure realized in wing scales of several butterfly species. By a circular polarization analysis of the band structure of such networks, we demonstrate strong circular dichroism effects: The butterfly srs microstructure, of cubic I4(1)32 symmetry, shows significant circular dichroism for blue to ultraviolet light, that warrants a search for biological receptors sensitive to circular polarization. A derived synthetic structure based on four like-handed silicon srs nets exhibits a large circular polarization stop band of a width exceeding 30%. These findings offer design principles for chiral photonic devices.  相似文献   

17.
Li Hu 《中国物理 B》2021,30(12):127303-127303
A strong chiral near-field plays significant roles in the detection, separation and sensing of chiral molecules. In this paper, a simple and symmetric metasurface is proposed to generate strong chiral near-fields with both circularly polarized light and linearly polarized light illuminations in the mid-infrared region. Owing to the near-field interaction between plasmonic resonant modes of two nanosheets excited by circularly polarized light, there is a strong single-handed chiral near-field in the gap between the two graphene nanosheets and the maximum enhancement of the optical chirality could reach two orders of magnitude. As expected, the intensity and the response wavelength of the chiral near-fields could be controlled by the Fermi level and geometrical parameters of the graphene nanosheets, as well as the permittivity of the substrate. Meanwhile, based on the interaction between the incident field and scattered field, the one-handed chiral near-field in the gap also could be generated by the linearly polarized light excitation. For the two cases, the handedness of the chiral near-field could be switched by the polarized direction of the incident light. These results have potential opportunities for applications in molecular detection and sensing.  相似文献   

18.
Guangzhou Geng 《中国物理 B》2022,31(12):124207-124207
The photonic spin Hall effect has attracted considerable research interest due to its potential applications in spin-controlled nanophotonic devices. However, realization of the asymmetrical photonic spin Hall effect with a single optical element is still a challenge due to the conjugation of the Pancharatnam-Berry phase, which reduces the flexibility in various applications. Here, we demonstrate an asymmetrical spin-dependent beam splitter based on a single-layer dielectric metasurface exhibiting strong and controllable optical response. The metasurface consists of an array of dielectric nanofins, where both varying rotation angles and feature sizes of the unit cells are utilized to create high-efficiency dielectric metasurfaces, which enables to break the conjugated characteristic of phase gradient. Thanks to the superiority of the phase modulation ability, when the fabricated metasurface is under normal incidence with a wavelength of 1550 nm, the left-handed circular polarization (LCP) light exhibits an anomalous refraction angle of 28.9°, while the right-handed circular polarization (RCP) light transmits directly. The method we proposed can be used for the flexible manipulation of spin photons and has potentials in high efficiency metasurfaces with versatile functionalities, especially with metasurfaces in a compact space.  相似文献   

19.
Beyond the scope of space-coding metasurfaces, space-time digital metasurfaces can substantially expand the application scope of digital metamaterials. In this paper, by adopting a superposition operation of terms with unequal coefficients, Huygens' principle, and a proper time-varying biasing mechanism, some useful closed-form formulas in the class of large digital metasurfaces are presented for predicting the absolute directivity of scatted beams. Moreover, in the harmonic beam steering scheme, by applying several suitable assumptions, two separate expressions are derived for calculating the exact total radiated power at harmonic frequencies and total radiated power for scattered beams located at the end-fire direction. Despite the simplifying assumptions applied, it is proved that the provided formulas can still be a good and fast estimate for developing a large digital metasurface with a predetermined power intensity pattern. The effect of quantization level and metasurface dimensions as well as the limitation on the maximum scan angle in harmonic beam steering are addressed. Several demonstrative examples numerically demonstrated through MATLAB software and the good agreement between simulations and theoretical predictions are observed. The author believes that the proposed straightforward approach discloses a new opportunity for various applications such as multiple-target radar systems and communication.  相似文献   

20.
莽朝永  苟高章  刘彩萍  吴克琛 《物理学报》2011,60(4):43101-043101
手性光学理论研究有助于解释手性分子的旋光机理和设计新的手性药物.采用B3LYP方法,计算了木榄醇A—C的旋光度和圆二色谱.从分子结构、正则振动和电子结构方面,探索了分子手性微观起源,分析了旋光度和电子圆二色谱的溶剂效应.表明OH的引入可调节分子的手性,甲基和苯环加强了分子的手性.发生在手性骨架上的振动和电子跃迁,加强了分子的手性.溶剂效应减小旋光度、削弱电子圆二色谱. 关键词: 木榄醇 光学活性 密度泛函理论 圆二色谱  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号