首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We use cold neutron spectroscopy to study the low-energy spin excitations of superconducting (SC) FeSe0.4Te0.6 and essentially nonsuperconducting (NSC) FeSe0.45Te0.55. In contrast with BaFe2-x(Co,Ni)xAs2, where the low-energy spin excitations are commensurate both in the SC and normal state, the normal-state spin excitations in SC FeSe0.4Te0.6 are incommensurate and show an hourglass dispersion near the resonance energy. Since similar hourglass dispersion is also found in the NSC FeSe0.45Te0.55, we argue that the observed incommensurate spin excitations in FeSe(1-x)Tex are not directly associated with superconductivity. Instead, the results can be understood within a picture of Fermi surface nesting assuming extremely low Fermi velocities and spin-orbital coupling.  相似文献   

2.
Large superconducting Fe Se crystals of(001) orientation have been prepared via a hydrothermal ion release/introduction route for the first time. The hydrothermally derived Fe Se crystals are up to 10 mm×5 mm×0.3 mm in dimension. The pure tetragonal FeSe phase has been confirmed by x-ray diffraction(XRD) and the composition determined by both inductively coupled plasma atomic emission spectroscopy(ICP-AES) and energy dispersive x-ray spectroscopy(EDX). The superconducting transition of the Fe Se samples has been characterized by magnetic and transport measurements. The zero-temperature upper critical field H_(c2) is calculated to be 13.2–16.7 T from a two-band model. The normal-state cooperative paramagnetism is found to be predominated by strong spin frustrations below the characteristic temperature T_(sn), where the Ising spin nematicity has been discerned in the FeSe superconductor crystals as reported elsewhere.  相似文献   

3.
A systematic study of optical and transport properties of the Hubbard model, based on the Metzner-Vollhardt dynamical mean-field approximation, is reviewed. This model shows interesting anomalous properties that are, in our opinion, ubiquitous to single-band strongly correlated systems (for all spatial dimensions greater than one) and also compare qualitatively with many anomalous transport features of the high-T c cuprates. This anomalous behaviour of the normal-state properties is traced to a ‘collective single-band Kondo effect’, in which a quasiparticle resonance forms at the Fermi level as the temperature is lowered, ultimately yielding a strongly renormalized Fermi liquid at zero temperature.  相似文献   

4.
We have used angle-resolved photoemission spectroscopy to determine the bulk electronic structure of Sr(2)RuO(4) above and below the Fermi liquid crossover near 25 K. Our measurements indicate that the properties of the system are highly orbital dependent. The quasi-2D gamma band displays Fermi liquid behavior while the remaining low energy bands show exotic properties consistent with quasi-1D behavior. In the Fermi liquid state below 25 K, the gamma band dominates the electronic properties, while at higher temperatures the quasi-1D beta and alpha bands become more important.  相似文献   

5.
王方原  李桂琴 《中国物理 B》2016,25(7):77304-077304
The spin transport properties of S–Au–S junction and Au–Au–Au junction between Au nanowires are investigated with density functional theory and the non-equilibrium Green's function. We mainly focus on the spin resonance transport properties of the center Au atom. The breaking of chemical bonds between anchor atoms and center Au atom significantly influences their spin transmission characteristics. We find the 0.8 eV orbital energy shift between anchor S atoms and the center Au atom can well protect the spin state stored in the S–Au–S junction and efficiently extract its spin state to the current by spin resonance mechanism, while the spin interaction of itinerant electrons and the valence electron of the center Au atom in the Au–Au–Au junction can extract the current spin information into the center Au atom. Fermi energy drift and bias-dependent spin filtering properties of the Au–Au–Au junction may transform information between distance, bias,and electron spin. Those unique properties make them potential candidates for a logical nanocircuit.  相似文献   

6.
We observe several non-Fermi liquid behaviors in the normal-state transport properties of CeMIn5 (M: Rh and Co) under pressure at low temperatures: (1) The dc-resistivity shows T-linear dependence, ρxxT. (2) The magnitude of Hall coefficient |RH| increases rapidly with decreasing temperature, and reaches a value much larger than |1/ne| at low temperatures. (3) The magnetoresistance displays T- and H-dependence that strongly violate Kohler's rule, and is well scaled by the tangent of the Hall angle, . These non-Fermi liquid properties in the electron transport are remarkably pronounced when the AF fluctuations are enhanced in the vicinity of the quantum critical point. Since all of these salient features have been also reported for high-Tc cuprates, we infer that the non-Fermi liquid transport properties capture universal features of strongly correlated electron systems in the presence of strong antiferromagnetic fluctuations.  相似文献   

7.
The -(BEDT-TTF)2X organic superconductors are described by a two parameter 2D Fermi surface model, in which bandwidth and departure from perfect nesting can be varied. We have studied the spin fluctuations effect on the normal state properties in a Fermi liquid approach using the RPA approximation. The calculated NMR relaxation rate exhibits a peak in 1/(T 1 T), which strongly decreases when the departure from perfect nesting of the Fermi surface and the bandwidth increase. These results are in good agreement with NMR experiments done in -(ET)2X at least qualitatively. In conclusion, we have shown that, in the normal state and with a Fermi liquid approach, the spin fluctuations, which are present in the system due to an imperfect nesting property of the Fermi surface, can induce anomalies of the magnetic properties. Besides, we can restore the usual behaviour like the Korringa law by increasing the bandwidth or by considering a more imperfect nesting. Our calculation reproduces qualitatively the applied pressure relaxation rate experiment done in -(ET)2X salt.  相似文献   

8.
Low temperature magnetic, thermal, and transport measurements in Ca2-xSrxRuO4 clarify the appearance of a cluster glass phase, after the evolution of a nearly ferromagnetic heavy-mass Fermi liquid from the spin-triplet superconductor Sr2RuO4. As the Mott transition is approached across a 2nd-order structural transition, both the magnetization and specific heat decrease considerably while the transport scattering rate diverges. A metamagnetic transition to a highly spin polarized state, with a local moment S=1/2, is observed. We argue that an orbital rearrangement with Ca substitution changes itinerant ferromagnetism to antiferromagnetism of localized moments.  相似文献   

9.
We apply strong magnetic fields of H=28.5 to 43 T to suppress superconductivity (SC) in the cuprates Bi2Sr2-xLaxCuO6+delta (x=0.65, 0.40, 0.25, 0.15, and 0), and investigate the low temperature (T) normal state by 63Cu nuclear spin-lattice relaxation rate (1/T1) measurements. We find that the pseudogap (PG) phase persists deep inside the overdoped region but terminates at x approximately 0.05, which corresponds to the hole doping concentration of approximately 0.21. Beyond this critical point, the normal state is a Fermi liquid that persists as the ground state when superconductivity is removed by the magnetic field. A comparison of the superconducting state with the H-induced normal state in the x=0.40 (Tc=32 K) sample indicates that there remains substantial part of the Fermi surface even in the fully developed PG state, which suggests that the PG and SC are coexisting matters.  相似文献   

10.
(59)Co nuclear spin-lattice relaxation has been measured for the heavy-fermion superconductor CeCoIn(5) in a range of applied fields directed parallel to the c axis. An enhanced normal-state relaxation rate, observed at low temperatures and fields just above H(c2)(0), is taken as a direct measure of the dynamical susceptibility and provides microscopic evidence for an antiferromagnetic instability. The results are well described using the self-consistent renormalized theory for two-dimensional antiferromagnetic spin fluctuations, and parameters obtained in the analysis are applied to previously reported specific heat and thermal expansion data with good agreement.  相似文献   

11.
《Physics letters. A》2019,383(18):2185-2192
Using density functional theory combined with non-equilibrium Green's function method, we investigate the spin-dependent transport properties of debrominated tetrabromopolyaromatic (D-TBPA) molecules embedded between zigzag graphene nanoribbon electrodes, and the effects of copper and cobalt side doping have also been considered. Our results show that the copper doping can insert new energy levels around the Fermi Level and keep spin degeneration of band structure, the cobalt doping can also induce spin splitting. The results on spin transport properties of D-TBPAs embedded into zigzag graphene nanoribbon electrodes show that these systems exist spin filtering and negative differential resistance behaviors. Corresponding physical mechanism on the spin-dependent transport property has been revealed according to the frontier molecular orbital characteristics.  相似文献   

12.
We present highly sensitive Hall effect measurements of the heavy fermion compound CeCoIn5 down to temperatures of 55 mK. A pronounced dip in the differential Hall coefficient | partial differential rho(xy)/ partial differential H| at low temperature and above the upper critical field of superconductivity, H(c2), is attributed to critical spin fluctuations associated with the departure from Landau Fermi liquid behavior. This identification is strongly supported by a systematic suppression of this feature at elevated pressures. The resulting crossover line in the field-temperature phase diagram favors a field induced quantum critical point at mu(0)H(qc) approximately 4.1 T below H(c2)(T=0) suggesting related, yet separate, critical fields.  相似文献   

13.
An effective spiral spin phase ground state provides a new paradigm for the high-temperature superconducting cuprates. It accounts for the recent neutron scattering observations of spin excitations regarding both the energy dispersion and the intensities, including the "universal" rotation by 45 degrees around the resonance energy . The intensity has a 2D character even in a single twin crystal. The value of is related to the nesting properties of the Fermi surface. The excitations above are shown to be due to in-plane spin fluctuations, a testable difference from the stripe model. The form of the exchange interaction function reveals the effects of the Fermi surface, and the unique shape predicts large quantum spin fluctuations in the ground state.  相似文献   

14.
We investigate theoretically the nonequilibrium transport properties of carbon nanotube quantum dots. Owing to the two-dimensional band structure of graphene, a double orbital degeneracy plays the role of a pseudospin, which is entangled with the spin. Quantum fluctuations between these 4 degrees of freedom result in an SU(4) Kondo effect at low temperatures. This exotic Kondo effect manifests as a four-peak splitting in the nonlinear conductance when an axial magnetic field is applied.  相似文献   

15.
In high-T(c) cuprates, the Nernst coefficient (nu) as well as the magnetoresistance (Deltarho/rho) increases drastically below the pseudogap temperature, T(*), which attracts much attention as a key phenomenon in the pseudogap region. We study these transport phenomena in terms of the fluctuation-exchange+T-matrix approximation. In this present theory, the d-wave superconducting (SC) fluctuations, which are mediated by antiferromagnetic (AF) correlations, become dominant below T(*). We especially investigate the vertex corrections both for the charge current and the heat one to keep the conservation laws. As a result, the mysterious behaviors of nu and Deltarho/rho are naturally explained as the reflection of the enhancement of the SC fluctuation, without assuming thermally excited vortices. The present result suggests that the pseudogap phenomena are well described in terms of the Fermi liquid with AF and SC fluctuations.  相似文献   

16.
We have measured spin diffusion coefficients of liquid 3He at a frequency of 920 kHz by pulsed NMR. By analyzing our data in the framework of the Leggett–Rice theory we got a spin diffusion coefficient and a Leggett–Rice parameter =λωτ simultaneously at each temperature. On approaching the superfluid transition the spin diffusion coefficients showed a deviation from predictions of the Fermi liquid theory. The deviation at low pressure was larger than that at high pressure. This anomaly may be due to the effects of fluctuations of superfluidity which were recently observed in the viscosity measurement of liquid 3He.  相似文献   

17.
《中国物理 B》2021,30(9):97403-097403
The driving mechanism of nematicity and its twist with superconductivity in iron-based superconductors are still under debate.Recently,a dominant B_(1 g)-type strain effect on superconductivity is observed in underdoped iron-pnictides superconductors Ba(Fe_(1-x)Co_x)_2 As_2,suggesting a strong interplay between nematicity and superconductivity.Since the long-range spin order is absent in FeSe superconductor,whether a similar strain effect could be also observed or not is an interesting question.Here,by utilizing a flexible film as substrate,we successfully achieve a wide-range-strain tuning of FeSe thin flake,in which both the tensile and compressive strain could reach up to ~0.7%,and systematically study the strain effect on both superconducting and nematic transition(T_c and T_s) in the FeSe thin flake.Our results reveal a predominant A_(1 g)-type strain effect on T_c.Meanwhile,T_s exhibits a monotonic anti-correlation with T_c and the maximum T_c reaches to 12 K when T_s is strongly suppressed under the maximum compressive strain.Finally,in comparison with the results in the underdoped Ba(Fe_(1-x)Co_x)_2 As_2,the absence of B_(1 g)-type strain effect in FeSe further supports the role of stripe-type spin fluctuations on superconductivity.In addition,our work also supports that the orbital degree of freedom plays a key role to drive the nematic transition in FeSe.  相似文献   

18.
Based on the transfer-matrix method, we theoretically investigate the spin-dependent transport properties in magnetic silicene superlattice in the presence of extrinsic Rashba spin–orbit interaction (RSOI). It is found that the spin transmission probability and spin conductivities can be efficiently controlled by the number of magnetic barriers. As the number of magnetic barriers increases, spin conductivities strongly decrease, and reduce to zero in the large on-site potential difference between A and B sublattices (Δz) region. The results indicate that a magnetic silicene superlattice exhibits a remarkable wavevector-dependent spin filtering effect. Also, the magnetoresistance (MR) ratio exhibits an oscillatory behavior with the Fermi energy. The MR ratio can be tuned by the Fermi energy, number of magnetic barriers and extrinsic RSOI. Specifically, in the presence of magnetic field the spin polarization can be observed, and increases by increasing the magnetic field.  相似文献   

19.
20.
The in-plane magnetoresistance (MR) in La(2-x)SrxCuO4 films with 0.03< x <0.05 has been studied in the temperature range 1.6 to 100 K, and in magnetic fields up to 14 T, parallel and perpendicular to the CuO2 planes. The behavior of the MR is consistent with a predominant influence of interaction effects at high temperatures, switching gradually to a regime dominated by spin scattering at low T. Weak localization effects are absent. A positive orbital MR appears close to the boundary between the antiferromagnetic and the spin-glass phase, suggesting the onset of Maki-Thompson superconducting fluctuations deep inside the insulating phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号