共查询到20条相似文献,搜索用时 10 毫秒
1.
《结构化学》2021,40(7)
Exploring high-capacity electrode materials is critical for the development of K-ion batteries. In this work, we report a layered-structured tungsten selenide(WSe2) anode, which not only delivers an ultrahigh volumetric capacity of 1772.8 Ah/L(or 188.4 mA h/g) at a current density of 5 mA/g but also exhibits good rate capability(72 mA h/g at 200 mA/g) and cycling stability(83.14% capacity retention over 100 cycles at 100 mA/g). We have also revealed the underlying reaction mechanism through ex situ X-ray powder diffraction. Furthermore, proof-of-concept full-cell batteries comprising of WSe_2 anodes and Prussian Blue cathodes are capable of delivering an energy density of 135.2 Wh/kgcathode+anode. This work highlights the potential of WSe_2 as a promising high-volumetric-capacity anode material for rechargeable potassium-ion batteries. 相似文献
2.
锂离子电池负极材料二氧化钛(TiO2)由于其零应变、环境友好和高安全性近年来得到了广泛的研究,但其较低的电子电导和离子迁移率以及较低的比容量(335 mAh·g-1)限制了其应用前景.本文梳理了一种纳米结构TiO2纳米管(TNTs)的研究历程以及最近研究进展,综述了TNTs常见的几种制备方法,即水热法、阳极氧化法和模板法及其形成机理,归纳了各种制备方法的优缺点,讨论了制备过程中各项参量对制得TNTs的影响.阐述了其晶体结构与形貌对电化学性能的影响,指出晶格取向一致、管壁厚度小,纳米管开口且同向排列的TNTs具有更好的电化学性能.同时探讨了针对该材料电导性差、比容量低而进行的包括结构设计、掺杂、复合等一系列改进措施,指出与高电导率及高比容量材料复合是一种方便有效的改进措施.最后总结了各种改性方法取得的进展及存在的不足,展望了TNTs的研究趋势和发展前景. 相似文献
3.
4.
采用固相法合成了纯六方相的TiS2粉体.X射线衍射(XRD)、扫描电子显微镜(SEM)结果表明该材料具有特征层状结构,其颗粒大小在10-20μm之间.作为锂离子电池负极材料,TiS2在3.00-0.00 V(vs Li/Li+)之间有3个明显的放电平台,首次可逆容量达668 mAh·g-1,在第一个放电电压范围(3.00-1.40V)内具有优异的循环可逆性.深度放电时由于Li2S的生成和材料颗粒严重破碎,在低于0.50 V时材料的循环性能不佳.通过减小材料颗粒度和提高导电剂含量,TiS2的电化学性能得到显著改善. 相似文献
5.
Chaithra Munivenkatappa Shetty Vijeth Rajshekar Shivappa Suresh Gurukar 《Russian Journal of Electrochemistry》2021,57(4):419-433
Russian Journal of Electrochemistry - Utilization of environmental friendly, potentially sustainable, low cost, high capacity organic electrode materials seem to be very promising for next... 相似文献
6.
碳纳米管自1990年被日本科学家Iijima发现以来[1],由于其独特的结构组成而具有良好的强度和弹性模量、高比表面积、良好的耐腐蚀性和导电性等特点受到了广泛的关注,并已在催化剂载体、纳米电子器件、储能材料、复合功能材料等诸多领域得到应用。多壁碳纳米管(MWCNT)是由多层石墨卷绕而成的同心圆筒,石墨层间距约为0.034nm,管径一般为几十纳米,管长可达数微米,因此多壁碳纳米管具有较高的长径比,可以被看作一维纳米线。由于多壁碳纳米管在管壁之间和管腔之中存在大量空间,为锂离子的嵌入提供了可能,因此近年来关于多壁碳纳米管储锂的研究… 相似文献
7.
报道了对苯二甲酸镁作为钠离子电池负极材料的研究. 以对苯二甲酸和氢氧化镁为原料,采用酸碱中和反应制备了含结晶水的对苯二甲酸镁(MgC8H4O4·2H2O),该材料对钠离子电池表现出了较好的电化学活性、优异的倍率性能以及良好的循环稳定性. 在0.5C(1C=300 mA·g-1)倍率下循环50 周以后,可逆容量由114mAh·g-1降至95 mAh·g-1,容量保持率高达83%;在2C的倍率下有高达90 mAh·g-1的可逆比容量. 另外,在氮气气氛中,400 ℃进行后续热处理得到了不含结晶水的对苯二甲酸镁(MgC8H4O4),探讨了结晶水对其电化学性能的影响. 结果表明,MgC8H4O4·2H2O的比容量、倍率性能以及循环稳定性都明显优于不含结晶水的对苯二甲酸镁. 相似文献
8.
报道了对苯二甲酸镁作为钠离子电池负极材料的研究.以对苯二甲酸和氢氧化镁为原料,采用酸碱中和反应制备了含结晶水的对苯二甲酸镁(MgC8H4O4·2H2O),该材料对钠离子电池表现出了较好的电化学活性、优异的倍率性能以及良好的循环稳定性.在0.5C(1C=300 mA·g-1)倍率下循环50周以后,可逆容量由114mAh·g-1降至95 mAh·g-1,容量保持率高达83%;在2C的倍率下有高达90 mAh·g-1的可逆比容量.另外,在氮气气氛中,400℃进行后续热处理得到了不含结晶水的对苯二甲酸镁(MgC8H4O4),探讨了结晶水对其电化学性能的影响.结果表明,MgC8H4O4·2H2O的比容量、倍率性能以及循环稳定性都明显优于不含结晶水的对苯二甲酸镁. 相似文献
9.
Introduction Thelargecapacityandhighcellvoltageoflithium basedcells ,coupledwiththeirrelativelylowenvironmen talimpactmakethemanidealcandidateforportablepowersupplies .Studyonpresentmaterialsforlithiumionbatter iesfocusesonimprovingcycleabilityandincreasingca pacityofelectrodematerials.Asoneoftheimportantpartsoflithium ionbatteries ,anodematerialshavebeeninvestigatedintensively .Now ,carbonaceousmaterialsareusedinnearlyalllithiumionbatteriesbecauseoftheirhighcapacity (theoreticalcapaci tyof… 相似文献
10.
Tungsten disulfide(WS2) has been recognized as a promising anode material for rechargeable potassium-ion batteries(PIBs). However, its K-ion intercalation capacity is limited to ~60 mAh·g-1. Here, we report a WS2-graphene composite anode which is fabricated through simple filtration of liquid-phase exfoliated WS2 and graphene nanosheet delivers a significantly improved specific capacity of 137 mAh·g-1 at a current density of 10 mA·g-1. The composite anodes also exhibit remarkable rate capability and long-term cyclability over 500 cycles. These results highlight the WS2-graphene composite structure as a promising anode material for long lifespan rechargeable potassium-ion batteries. 相似文献
11.
采用固相法合成了纯六方相的TiS2粉体. X射线衍射(XRD)、扫描电子显微镜(SEM)结果表明该材料具有特征层状结构, 其颗粒大小在10-20 μm之间. 作为锂离子电池负极材料, TiS2在3.00 V(vs. Li+/Li)以下有3个明显的放电平台, 首次可逆容量达668 mAh·g-1, 在第一个放电电压范围(3.00-1.40 V)内具有优异的循环可逆性. 深度放电时由于Li2S的生成和材料颗粒严重破碎, 在低于0.50 V时材料的循环性能不佳. 通过减小材料颗粒度和提高导电剂含量, TiS2的电化学性能得到显著改善. 相似文献
12.
13.
本文制备了聚4-甲基丙烯酸-2,2,6,6-四甲基哌啶-1-氮氧自由基酯(PTMA)/石墨烯纳米复合材料,并报道了其作为可充镁电池正极材料的电化学性能.通过傅里叶变换红外(FTIR)光谱、扫描电镜(SEM)、透射电镜(TEM)表征复合材料的结构和形貌;循环伏安和恒电流充放电测试其电化学性能.粒径10 nm左右的PTMA颗粒分散在具有导电作用的石墨烯表面;在"一代"电解液Mg(AlCl2BuEt)2/四氢呋喃(THF)(0.25 mol L-1)中,22.8mA g-1充放电电流密度下,PTMA/石墨烯复合材料的起始放电容量可达到81.2 mAh g-1.研究结果表明,含有自由基的有机化合物可以作为可充镁电池的一类新型正极材料,可以进一步通过使用具有高氧化分解电压的电解液来提高其放电容量. 相似文献
14.
通过高能球磨、微波辅助合成和化学合成方法制备不同形貌和不同尺寸的SnS材料. 运用X射线衍射和透射电镜对其结构和形貌进行分析. 在透射电镜下观察发现, 所得SnS材料呈现出纳米颗粒、层片和纳米棒状. 电化学测试结果表明, 高能球磨和化学合成(无表面活性剂加入)得到的SnS材料有较好的电化学性能, 在循环40个周期后仍分别有375和414 mAh·g-1 的电化学容量. 纳米级SnS电极材料良好的电化学性能有赖于其紧凑的纳米结构, 一定的形貌及合适的尺寸. 尽管非活性相Li2S可以帮助维持SnS电极在充放电过程中的稳定结构, 但SnS的形貌及尺寸才是获得良好电化学性能的SnS电极的关键因素. 相似文献
15.
16.
以高锰酸钾和抗坏血酸合成的MnC2O4·2H2O为前驱体, 通过固相烧结制备了纳米MnO材料. 分别采用X射线衍射(XRD)、扫描电子显微镜(SEM)和恒电流充放电技术考察了其晶相结构、颗粒形貌和电化学性能.分析结果表明, 该纳米MnO具有面心立方的岩盐结构, 结晶度良好. 其颗粒是由粒径为50-100 nm的一次颗粒结合而成的二次颗粒, 大小约为400-600 nm. 当充放电电流密度为46.3 mA·g-1时, 纳米MnO的首次库仑效率可达68.9%, 可逆比容量为679.7 mAh·g-1. 在141.1 mA·g-1的电流密度下循环50圈后, 比容量由584.5mAh·g-1降至581.5 mAh·g-1, 容量保持率高达99.5%, 表现出优异的循环性能. 此外, 当电流密度增加到494.7 mA·g-1 (~2C)时, 其比容量依然可达290 mAh·g-1, 表现出较好的倍率性能和快速充放电能力. 因此, 纳米MnO具有比容量高、循环稳定、倍率性能好和安全环保等优点,是一种非常有前景的锂离子电池负极材料. 相似文献
17.
使用基于混合基表示的第一原理赝势法,研究了CuSn化合物的电子与几何结构性质.得出CuSn二元化合物在NaCl结构、 CsCl结构、闪锌矿结构、 WC结构、 NiAs结构和四角结构(在CsCl结构计算的基础上,再沿C轴畸变)下的体系能量-体积的关系,即能量与结构相图;还给出了最稳定相的能带结构、电子态密度以及电荷密度分布等性质,也讨论了CuSn在最稳定的NiAs结构下电子键合性质的特点.计算得到的CuSn能量最低结构为NiAs结构,与实验结果一致. 相似文献
18.
天然石墨经过浓硫酸氧化处理,酚醛树脂包覆并高温碳化后形成具有核壳结构的碳包覆氧化天然石墨复合材料.采用扫描电子显微镜(SEM),透射电子显微镜(TEM),X射线衍射(XRD),激光显微拉曼光谱(Raman)等检测技术对氧化处理以及酚醛树脂热解碳包覆前后天然石墨材料的结构与形貌进行分析与表征.结果表明,氧化处理与适量的酚醛树脂热解碳包覆有效修复了天然石墨表面的一些缺陷结构,使其表面更为光滑.电化学测试结果显示,经过氧化处理与酚醛树脂热解碳包覆后天然石墨材料电化学性能得到明显提高.酚醛树脂包覆量为9%时,复合材料表现出最好的电化学性能,其首次放电比容量为434.0mAh·g-1,40次循环后,放电比容量保持在361.6mAh·g-1,而未经处理的天然石墨放电比容量仅为332.3mAh·g-1.该改性方法有效提高了天然石墨材料的比容量,对其进一步应用具有重要意义. 相似文献
19.
Dr. Nan Chen Dr. Yu Gao Meina Zhang Dr. Xing Meng Prof. Chunzhong Wang Prof. Yingjin Wei Dr. Fei Du Prof. Gang Chen 《Chemistry (Weinheim an der Bergstrasse, Germany)》2016,22(21):7248-7254
Silver molybdate, Ag2Mo2O7, has been prepared by a conventional solid‐state reaction. Its electrochemical properties as an anode material for sodium‐ion batteries (SIBs) have been comprehensively examined by means of galvanostatic charge–discharge cycling, cyclic voltammetry, and rate performance measurements. At operating voltages between 3.0 and 0.01 V, the electrode delivered a reversible capacity of nearly 190 mA h g?1 at a current density of 20 mA g?1 after 70 cycles. Ag2Mo2O7 also demonstrated a good rate capability and long‐term cycle stability, the capacity reaching almost 100 mA h g?1 at a current density of 500 mA g?1, with a capacity retention of 55 % over 1000 cycles. Moreover, the sodium storage process of Ag2Mo2O7 has been investigated by means of ex situ XRD, Raman spectroscopy, and HRTEM. Interestingly, the anode decomposes into Ag metal and Na2MoO4 during the initial discharge process, and then Na+ ions are considered to be inserted into/extracted from the Na2MoO4 lattice in the subsequent cycles governed by an intercalation/deintercalation mechanism. Ex situ HRTEM images revealed that Ag metal not only remains unchanged during the sodiation/desodiation processes, but is well dispersed throughout the amorphous matrix, thereby greatly improving the electronic conductivity of the working electrode. The “in situ” decomposition behavior of Ag2Mo2O7 is distinct from that of chemically synthesized, metal‐nanoparticle‐coated electrode materials, and provides strong supplementary insight into the mechanism of such new anode materials for SIBs and may set a precedent for the design of further materials. 相似文献
20.
Zn1-xMgxO (x = 0, 0.18) thin films were fabricated on the copper substrates by radiofrequency magnetron sputtering using the high pure argon as a sputtering gas. The Zn1-xMgxO films were characterized by X-ray powder diffraction (XRD), scanning electron microscope (SEM) and galvanostatic tests. The electrochemical test showed an improved electrochemical performance of Zn0.82EMg0.18O thin film as an anode material for lithium ion batteries. 相似文献