首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Journal of Solid State Electrochemistry - Sulfonated poly(ether ether ketone)/poly(vinylidene fluoride)/graphene (S/P/G) composite membrane was prepared through a solution-casting method for a...  相似文献   

2.
Thin film composite (TFC) membranes were prepared from sulfonated poly(phthalazinone ether sulfone ketone) (SPPESK) as a top layer coated onto poly(phthalazinone ether sulfone ketone) (PPESK) ultrafiltration (UF) support membranes. The effects of different preparation conditions such as the SPPESK concentration, organic additives, solvent, degree of substitution (DS) of SPPEK and curing treatment temperature and time on the membrane performance were studied. The SPPESK concentration in the coating solution was the dominant factor for the rejection and permeation flux. The TFC membranes prepared from glycerol as an organic additive show better performance then those prepared from other additives. The rejection increased and the flux decreased with increasing curing treatment temperatures. The salt rejections of the TFC nanofiltration (NF) membranes increased in the order MgCl2 < MgSO4 < NaCl < Na2SO4. TFC membranes showed high water flux at low pressure. SPPESK composite membranes rejections for a 1000 mg L−1 Na2SO4 feed solution was 82%, and solution flux was 68 L m−2 h−1 at 0.25 MPa pressure.  相似文献   

3.
磺化聚醚砜酮树脂的催化活性   总被引:3,自引:0,他引:3  
采用磺酸化的方法制备得到了一种新型的磺化聚醚砜酮树脂催化剂(S-PPESK),并采用滴定法对这种催化剂进行了表征.在异丁烯的低聚反应中,对这种新型树脂催化剂的催化活性进行了细致的研究,磺化聚醚砜酮树脂催化剂在反应中表现出了很好的催化活性和优良的二聚选择性.实验结果显示,当催化剂的磺化度(S.D.)增加时,即催化剂的酸量增加时,异丁烯的转化率和三聚物的选择性也增加,但二聚物的选择性降低,四聚物的选择性则几乎没有变化.  相似文献   

4.
Sulfonated polyimide (SPI) and ZrO2 are blended to prepare a series of novel SPI/ZrO2 composite membranes for vanadium redox flow battery (VRFB) application. Results of atomic force microscopy and X‐ray diffraction reveal that ZrO2 is successfully composited with SPI. All SPI/ZrO2 membranes possess high proton conductivity (2.96–3.72 × 10?2 S cm?1) and low VO2+ permeability (2.18–4.04 × 10?7 cm2 min?1). SPI/ZrO2‐15% membrane is determined as the optimum one on account of its higher proton selectivity and improved chemical stability. The VRFB with SPI/ZrO2‐15% membrane presents higher coulombic efficiency and energy efficiency than that with Nafion 117 membrane at the current density, which ranged from 20 to 80 mA cm?2. Cycling tests indicate that the SPI/ZrO2‐15% membrane has good operation stability in the VRFB system. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
采用磺酸化的方法制备了一种热稳定性能良好的新型固体酸树脂催化剂——磺化聚醚砜酮树脂(S-PPESK),并应用在异丁烯的低聚反应中.S-PPESK在较低的温度条件下对异丁烯的低聚反应表现出了很高的催化活性和二聚反应选择性.对S-PPESK的热稳定性能采用预处理的方法进行了测试,结果显示它的预处理温度高达180 ℃,与商业磺酸树脂的预处理温度相比高出约40 ℃. S-PPESK在异丁烯的低聚反应中表现出了良好的催化活性、优良的二聚反应选择性和很好的热稳定性能,其应用前景广泛.  相似文献   

6.
Chloromethylated poly(phthalazinone ether sulfone ketone) (CMPPESK) was prepared from poly(phthalazinone ether sulfone ketone) (PPESK) using chloromethyl octyl ethers (CMOE) with lower toxicity as chloromethylated regent.CMPPESK was soluble in N-methyl-2-pyrrolidone (NMP),N,N-dimethylacetamide (DMAc) and chloroform.Quatemized poly(phthalazinone ether sulfone ketone) (QAPPESK) was prepared from CMPPESK by quaternization.QAPPESK had excellent solvent resistance, which was only partly soluble in sulfuric acid (98%) and swollen in N,N-dimethylformamide (DMF).The vanadium redox flow battery (V-RFB) using QAPPESK anion-exchange membrane had better performance with 88.3% of overall energy efficiency.  相似文献   

7.
New hydrophobic poly(phthalazinone ether sulfone ketone) (PPESK) hollow fiber composite membranes were obtained by surface-coated modification method.  相似文献   

8.
New hydrophobic poly(phthalazinone ether sulfone ketone) (PPESK) hollow fiber composite membranes were obtained by surface-coated modification method.  相似文献   

9.
New hydrophobic poly(phthalazinone ether sulfone ketone) (PPESK) hollow fiber composite membranes coated with silicone rubber and with sol–gel polytrifluoropropylsiloxane were obtained by surface-coated modification method. The effects of coating time, coating temperature and the concentration of silicone rubber solution on the vacuum membrane distillation (VMD) properties of silicone rubber coated membranes were investigated. It was found that high water permeate flux could be gotten in low temperature and low concentration of silicone rubber solution. When the coating temperature is 60 °C, the coating time is 9 h and the concentration of silicone rubber solution is 5 g L−1 the water permeate flux of the silicone rubber coated membrane is 3.5 L m−2 h−1. The prepolymerization time influence the performance of polytrifluoropropylsiloxane coated membranes, and higher prepolymerization time decrease the water permeate flux of the membrane. The water permeate flux and the salt rejection was 3.7 L m−2 h−1 and 94.6%, respectively in 30 min prepolymerization period. The VMD performances of two composite membranes during long-term operation were studied, and the results indicated that the VMD performances of two composite membranes are quite stable. The salt rejection of silicone rubber coated membrane decreased from 99 to 95% and the water permeate flux fluctuated between 2.0 and 2.5 L m−2 h−1. The salt rejection of polytrifluoropropylsiloxane coated membrane decreased from 98 to 94% and the water permeate flux fluctuated in 1 L m−2 h−1 range.  相似文献   

10.
Three kinds of sulfonated poly(ether ether ketone) (SPEEK)/nano oxide (Al2O3, SiO2, and TiO2) composite membranes are fabricated for vanadium redox flow battery (VRFB) application. The composite membranes with 5 wt% of Al2O3, SiO2, and TiO2 (S/A-5 %, S/S-5 %, and S/T-5 %) exhibit excellent cell performance in VRFB. Incorporation of nano oxides (Al2O3, SiO2, and TiO2) in SPEEK membrane improves in aspect of thermal, mechanical, and chemical stabilities due to the hydrogen bonds’ interaction between SPEEK matrix and nano oxides. The energy efficiencies (EEs) of composite membranes are higher than that of Nafion 117 membrane, owing to the good balance between proton conductivity and vanadium ion permeability. The discharge–capacity retentions of composite membranes also overwhelm that of Nafion 117 membrane after 200 cycles, indicating their good stability in VRFB system. These low-cost SPEEK/nano oxide composite membranes exhibit great potential for the application in VRFB.  相似文献   

11.
Chlorosulfonated homogeneous polyethylene (PE) dense film (PE-X) and asymmetric membrane (MH-X) were tested as separators for the all-vanadium redox flow battery. The membranes are prepared by the vapour phase chlorosulfonation of the PE film. The measured lowest resistivites equilibrated in 2 M KCl aqueous solution were 0.27 Ω cm2 and 0.96 Ω cm2, respectively, for PE-X (with thickness 20 μm) and for MH-X (with PE-layer 20 μm). The area resistivities of the membranes as separators in the all-vanadium redox flow battery were obtained. At a charge-discharge current density 633 A/m2, these values were 3.09 Ω cm2 and 3.46 Ω cm2, respectively, for charge and discharge PE-X, and were 3.26 Ω cm2 and 8.30 Ω cm2, respectively, for charge and discharge MH-X.  相似文献   

12.
Polymer blending is used to modify or improve the dimensional and thermal stability of any two different polymers or copolymers. In this study, both sulfonated polybenzimidazole homopolymer (MS-p-PBI 100) and sulfonated poly(aryl ether benzimidazole) copolymers (MS-p-PBI 50, 60, 70, 80, 90) were successfully synthesized from commercially available monomers. The chemical structure and thermal stability of these polymers was characterized by 1H NMR, FT-IR and TGA techniques. Blend membranes (BMs) were prepared from the salt forms of sulfonated poly(ether sulfone) (PES 70) and MS-p-PBI 100 using dimethylacetamide (DMAc). These blend membranes exhibited good stability in boiling water. The blending of 1 wt.% of MS-p-PBI 100 and 99 wt.% of PES 70 to produce the blend membrane BM 1 reduced membrane swelling, thus leading to good dimensional stability and comparable proton conductivity. Hence, BM 1 was chosen for the fabrication of a membrane electrode assembly (MEA) for proton exchange membrane fuel cell (PEMFC) and direct methanol fuel cell (DMFC) applications. This paper reports on PEMFC and DMFC performance under specific conditions.  相似文献   

13.
Formation kinetics of the poly(phthalazinone ether sulfone ketone) (PPESK) asymmetric membrane via wet phase-inversion process has been studied experimentally. The membrane morphology has been observed using an online optical microscope–CCD camera experimental system. The precipitation front movement, X, has been measured. Three different linear correlations between the value of X2 and the gelation time, t, have been identified. This observation is different from a commonly accepted conclusion which assumed a single linear correlation between X2 and t for the whole gelation process. Compared to the morphology evolution of the membrane, it is realized that these three correlations correspond to the three consecutive gelation steps: formation of the top layer, formation of the transition layer and formation of the support layer. The effect of two additives, PEG1000 and Tween80, on the formation kinetics as well as the membrane flux has also been studied. The results present here may provide better understanding of the asymmetric membrane formation process.  相似文献   

14.
Arylene ether multiblock copolymers of the (AB)n-type with various degrees of sulfonation have been prepared by a two-step polycondensation procedure. Multiblock copolymers in high yields and of high molecular weights were obtained. For comparison random copolymers with the same overall composition were synthesized. The theoretical ion-exchange capacities (IEC) of the materials were ranging from 0.50 mmol/g to 1.25 mmol/g. The water-uptake of the multiblock copolymers showed a linear dependency from the IEC and was increasing with increasing IEC. No differences were observed between random and block copolymers. Furthermore, the hydrolytic stability of aromatic sulfonic acid groups was investigated in this study. Aromatic sulfonic acids, having additional electron donating groups, especially in ortho- or para-position to the sulfonic acid group are sensitive to hydrolytic desulfonation. On the other hand electron-withdrawing groups in meta-position showed a stabilizing effect.  相似文献   

15.
以杂萘联苯共聚醚砜(PPHES)为原料,氯仿为溶剂,浓硫酸为磺化试剂,采用非均相磺化法对PPHES进行了磺化改性,得到了一系列不同磺化度的磺化杂萘联苯共聚醚砜(SPPHES).考察了浓硫酸浓度、磺化反应温度和时间等工艺条件对产物磺化度的影响.利用FT-IR、1H-NMR对SPPHES进行了表征.结果表明,磺酸基已成功引...  相似文献   

16.
Interface is an important microstructure for advanced polymer‐matrix composite. The composite interface is the bridge and the link for stress transferring between the fiber and the matrix resin. In this work, oxygen plasma treatment was used for modification of aramid fiber surface. The effects of plasma treatment power on interlaminar shear strength of composite were evaluated by short‐beam shear test. The morphologies of both the aramid fiber surface and its composite interface fracture were observed by SEM. The chemical structure and surface chemical composition of the plasma‐treated and separated fibers were analyzed by Fourier transform infrared (FTIR) and XPS, respectively. The results showed that the interlaminar shear strength of composite was enhanced by 33% with plasma treatment power of 200 W. The FTIR and XPS results indicated that the active functional groups were introduced onto the aramid fiber surface by plasma treatment forming chemical bonds with the poly(phthalazinone ether sulfone ketone) resin. The SEM results proved that the aramid fiber surface was roughened by plasma treatment enhancing the mechanical bond with the poly(phthalazinone ether sulfone ketone) resin. The composite rupture occurred from the composite interface to the fiber or the matrix resin. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

17.
As an alternative to Nafion® ion exchange membrane, an inexpensive commercially-available Radel® polymer was sulfonated, fabricated into a thin membrane, and evaluated for its performance in a vanadium redox flow battery (VRFB). The sulfonated Radel (S-Radel) membrane showed almost an order of magnitude lower permeability of VO2+ ions (2.07 × 10?7 cm2/min), compared to Nafion 117 (1.29 × 10?6 cm2/min), resulting in better coulombic efficiency (~ 98% vs. 95% at 50 mA/cm2) and lower capacity loss per cycle. Even though the S-Radel membrane had a slightly higher membrane resistance, the energy efficiency of the VRFB with the S-Radel membrane was comparable to that of Nafion because of its better coulombic efficiency resulting from the lower vanadium ion crossover. The S-Radel membrane exhibited good performance up to 40 cycles, but a decline in performance at later cycles was observed, likely as a result of membrane degradation.  相似文献   

18.
Modification of poly(phthalazinone ether sulfone ketone) (PPESK) by sulfonation with concentrated or fuming sulfuric acid was carried out in order to prepare thermally stable polymers as membrane materials having increased hydrophilicity and potentially improved fouling-resistance. The sulfonated poly(phthalazinone ether sulfone ketone)s (SPPESK) were fabricated into ultrafiltration (UF) and nanofiltration (NF) asymmetric membranes. The effects of SPPESK concentration and the type and concentration of additives in the casting solution on membrane permeation flux and rejection were evaluated by using an orthogonal array experimental design in the separation of polyethyleneglycol (PEG12000 and PEG2000) and Clayton Yellow (CY, MW 695). One UF membrane formulation type had a 98% rejection rate for PEG12000 and a high pure water flux of 867 kg m−2 h−1. All the NF membranes made in the present study had rejections of ≥96%, and one had a high water flux of 160 kg m−2 h−1. Several of the NF membrane formulation types had ∼90% rejection for CY. When the membranes were operated at higher temperatures (80°C), the rejection rates declined slightly and pure water flux was increased more than two-fold. Rejection and flux values returned to previous values when the membranes were operated at room temperature again. Mono- and divalent salt rejections and fluxes were studied on an additional NF membrane set.  相似文献   

19.
Sulfonated poly (vinylidene fluoride-co-hexafluoropropylene) (SPVDF-co-HFP) based nanocomposite proton exchange membranes (PEM) are fabricated by simple solution casting method using polydopamine coated exfoliated molybdenum disulfide (PDA-MoS2) nanosheets as an alternative for Nafion® in vanadium redox flow batteries (VRFBs). PDA-MoS2 is synthesized by the etching of exfoliated MoS2 nanosheets with dopamine molecule by self-polymerization method. Various characteristic results clearly demonstrated that the incorporated PDA-MoS2 nanosheets homogeneously distributed into the SPVDF-co-HFP matrix and the presence of NH/NH2 group electrostatically interacts with SPVDF-co-HFP to form a strong acid-base pair and thus enhances the proton transport via Grotthuss type mechanism. Besides, the improvement in surface hydrophilicity provides the vehicle type conduction also. As a result, SPVDF-co-HFP/PM nanocomposite membranes showed higher proton conductivity in comparison with the pristine membrane. Especially SPVDF-co-HFP/PM-1 membrane demonstrated the excellent proton conductivity of 5.24 × 10−3 Scm−1 at 25 °C, lower vanadium-ion permeability of 1.05 × 10−8 cm2min−1 and highest membrane selectivity of 49.9 × 104 Scm−3min. On the other hand, vanadium-ion stability of the membrane increased by adding the PD-MoS2 content is attributed to their strong electrostatic attraction towards the polymer matrix. Overall results suggested that the SPVDF-co-HFP/PM-1 nanocomposite membrane is found to be a better alternative for commercially costly Nafion in VRFB applications.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号