首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thiourea aldehyde resin-based heteroatom doping carbon and graphene composites (RHDC/GN) were prepared by an in situ polymerization and carbonization. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images showed that thiourea aldehyde resin deposited on lamellar GO flakes during the polymerization and RHDC/GN composites had a hierarchical structure. The specific capacitance of the RHDC/GN composites was high up to 355 F g?1, much higher than that of the pure thiourea aldehyde resin-based heteroatom doping carbon (RHDC) with specific capacitance of 135 F g?1 at a current density of 1.0 A g?1 in 6-M KOH electrolyte. And the hetroatoms in RHDC/GN composites increase the specific capacitance, and GN enhances the conductivity of the electrodes which is beneficial to improving electrochemical cycling stability of the electrode significantly. The specific capacitance retains 90.97% after 5000 charge-discharge processes at 10 A g?1, which provides potential as supercapacitors.  相似文献   

2.
Crosslinked-polyaniline (CPA) nano-pillar arrays adsorbed on the surface of reduced graphene oxide (RGO) sheets were synthesized by in situ solution polymerization through two steps of reduction. The electrochemical analyses demonstrated that the befittingly reduced CPA/RGO composite exhibited high performance as electrode materials for supercapacitors. The CPA/RGO composite showed very high specific capacitance of 1532 F g?1 at a scan rate of 10 mV s?1 or 694 F g?1 at a current density of 2 A g?1 in 1 M H2SO4 electrolyte, as well as great energy density of 61.4 W h kg?1 at a current density of 2 A g?1. The electrode material also had decent power density of 4 kW kg?1 at a current density of 10 A g?1, and good cycling stability of 92.5 % capacitance retained after 500 cycles of cyclic voltammetry at 500 mV s?1. The neat microstructures and super electrochemical properties suggest the potential use of the composites in supercapacitors.  相似文献   

3.
A facile microwave method was employed to synthesize NiCo2O4 nanosheets as electrode materials for lithium‐ion batteries and supercapacitors. The structure and morphology of the materials were characterized by X‐ray diffraction, field‐emission scanning electron microscopy, transmission electron microscopy and Brunauer–Emmett–Teller methods. Owing to the porous nanosheet structure, the NiCo2O4 electrodes exhibited a high reversible capacity of 891 mA h g?1 at a current density of 100 mA g?1, good rate capability and stable cycling performance. When used as electrode materials for supercapacitors, NiCo2O4 nanosheets demonstrated a specific capacitance of 400 F g?1 at a current density of 20 A g?1 and superior cycling stability over 5000 cycles. The excellent electrochemical performance could be ascribed to the thin porous structure of the nanosheets, which provides a high specific surface area to increase the electrode–electrolyte contact area and facilitate rapid ion transport.  相似文献   

4.
A high performance activated carbon having pore diameter of 2.8 nm and specific surface area of 841.8 m2 g?1 is prepared by chemical activation of eucalyptus leaves using KOH as an activating agent. The chemically-treated eucalyptus leaves EL(T) as electrode material has a specific capacitance of 663.5 mF cm?2 (equivalent to single electrode specific capacitance of 442.3 F g?1) with solid polymer electrolyte. This active material has excellent rate capability and good cycle performance, over 95 % of the original capacitance is retained after 5,000 cycles. The energy density of 101.6 Wh kg?1 and power density of 2.85 kW kg?1 has been observed for EL(T) based quasi solid-state supercapacitors.  相似文献   

5.
Recently, tremendous research efforts have been concentrated on developing high-performance electrode materials to meet the ever-increasing energy and power demands in supercapacitors. Herein, we presented a high-capacity supercapacitor material based on nitrogen-enriched hierarchical porous carbons (NHPCs) synthesized by the carbonization of melamine formaldehyde resins using eco-friendly and inexpensive nano-CaCO3 as template. The effects of carbonization temperature and template content on the porous structure and electrochemical characteristics were compared and discussed in detail. The prepared NHPCs possessed large surface area up to 834 m2 g?1 and high nitrogen content up to 20.94 wt %. As electrode material for supercapacitors, NHPCs exhibited superior electrochemical performances with high specific capacitance (190 F g?1 at 20 A g?1), outstanding rate capability (80 %), and excellent cycling stability (over 2,000 cycles at 5 A g?1) in 1 M sulfuric acid media. The excellent electrochemical performances are due to the synergic effects of unique hierarchical porous microstructure, abundant nitrogen and oxygen functionalities, as well as high degree of graphitization framework.  相似文献   

6.
Ordered mesoporous carbon materials with high microporosity were synthesized by a low temperature autoclaving of citric acid-catalyzed polymerized resorcinol/formaldehyde in the presence of the triblock copolymer F127 and were activated by nitric acid oxidation. The materials were used as electrode materials in electrochemical supercapacitors. A bimodal pore size distribution of 2.1–2.3 and 5.3 nm with a surface area of 465–578 m2 g?1 and pore volume of 0.44–0.54 cm3 g?1 was obtained with the retention of an ordered mesoporous structure after nitric acid (2 M) treatment. The introduced functional groups produced a pseudocapacitance, which resulted in an increase in the specific capacitance. The electrochemical capacitance of the resulting mesoporous carbons showed a marked increase after 3 h of nitric acid activation, exhibiting a high value of 295 F g?1 at the scan rate of 10 mV s?1 in 6 M KOH aqueous solution and good cycling stability with specific capacitance retention over 500 cycles.  相似文献   

7.
The activated nitrogen-enriched novel carbons (a-NENCs) have been prepared by direct carbonization of polyaniline/activated mesocarbon microbead composites and further activated by 16 M?HNO3. The electrochemical performances and supercapacitive behaviors of the a-NENCs in 6 M KOH, 1 M?H2SO4, and 0.5 M?K2SO4 solutions are evaluated by cyclic voltammetry, galvanostatic charge/discharge, electrochemical impedance spectroscopy, cyclic life, leakage current, and self-discharge measurements. The results demonstrate that the supercapacitors perform definitely supercapacitive behaviors; especially in 6 M KOH electrolyte, the supercapacitor represents much better electrochemical performance with more excellent reversibility, shorter relaxation time of 1.11 s, and nearly ideal polarizability. The maximum specific capacitance of the supercapacitors using a-NENCs as active electrode material is 85.1 F?g?1 at a rate of 500 mA?g?1 in 6 M?KOH. These outcomes indicate that the 6 M?KOH aqueous solution is a promising electrolyte for the supercapacitor with a-NENCs as electrode material.  相似文献   

8.
High-performance and low-cost electrochemical capacitors (ECs) are essential for large-scale applications in energy storage. In this work, the specific capacitance of active carbon (AC) electrode was significantly improved through the combination of introducing functional groups on the surface of AC and adding redox-active molecules (K3Fe(CN)6) into 2?M KOH aqueous electrolytes. The surface-oxygen functionalized AC (FAC) was synthesized using HNO3 echoed as the electrode and 2?M KOH with 0.1?M K3Fe(CN)6 as the electrolyte. The surface functional groups of the AC not only contribute to the pseudocapacitance but also increase the active sites of the electrode/electrolyte interface, which enhances the electrochemical activity of the Fe(CN)63?/Fe(CN)64? redox pair, thus leading to high capacitance. In the redox electrolyte, the specific capacitance was much higher in 229.17?F?g?1 (1?A?g?1) achieved for those FAC than in raw AC (only 147.06?F?g?1). Similarly, the FAC electrode suggested high energy density and extended cycling stability in the KOH?+?K3Fe(CN)6 electrolyte.  相似文献   

9.
Single-walled Carbon Nanotubes as Electrode Materials for Supercapacitors   总被引:2,自引:0,他引:2  
Large-scale synthesized single-walled carbon nanotubes (SWNT) prepared by electric arc discharge method and a mixture of NiO and Y2O3 as catalyst have been used as electrode materials for supercapacitors. N2 adsorption/desorption measurement shows that the SWNT is a microporous and mesoporous material with specific surface area 435 m^2·g^-1. The specific capacitance of the nitric acid treated SWNT in aqueous electrolyte reaches as high as 105 F/g, which is a combination of electric double layer capacitance and pseudocapacitance. The SWNT-based capacitors also have good charge/discharge reversibility and cycling perdurability.  相似文献   

10.
In order to achieve pesudocapacitive performance of single‐wall carbon nanotube (SWCNT) electrodes, a high‐efficient and reversible redox strategy utilizing a redox‐mediated electrolyte for SWCNT‐based supercapacitors is reported. In this novel redox‐mediated electrolyte, the single‐electrode specific capacitance of the supercapacitor is heightened four times, reaching C=162.66 F g?1 at 1 A g?1. The quick charge‐discharge ability of the supercapacitor is also enhanced, and the relaxation time is as low as 0.58 s. Furthermore, the supercapacitor shows an excellent cycling performance of 96.51 % retention after 4000 cycles. The remarkable results presented here illustrate that the redox strategy is a facile and straightforward approach to improve the performances of SWCNT electrodes.  相似文献   

11.
Nickel oxide nanosheets have been successfully synthesized by a facile ethylene glycol mediated hydrothermal method. The morphology and crystal structure of the nickel oxide nanosheets were characterized by X‐ray diffraction, field‐emission SEM, and TEM. When applied as electrode materials for lithium‐ion batteries and supercapacitors, nickel oxide nanosheets exhibited a high, reversible lithium storage capacity of 1193 mA h g?1 at a current density of 500 mA g?1, an enhanced rate capability, and good cycling stability. Nickel oxide nanosheets also demonstrated a superior specific capacitance of 999 F g?1 at a current density of 20 A g?1 in supercapacitors.  相似文献   

12.
In the present work, boron-doped multicomponent gel polymer electrolytes composed of host polymer, sulfonated polysulfone (SPSU) and the additives; ionic liquid, 1-ethyl-3-methyl-imidazolium tetrafluoroborate (IL), H3BO3, polyphosphoric acid (PPA) were prepared. Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA) techniques were used to characterize the sulfonated polysulfone-based electrolytes. Ion conductivity of these gel electrolytes were studied by dielectric impedance analyzer within the temperature from ?20 to 100°C. The ionic conductivity of the SPSU-5IL-1PPA and SPSU-5IL-1H3BO3-1PPA were measured as 4.8 × 10?3 and 9 × 10?4 S cm?1, respectively. Supercapacitor having activated carbon-based composite electrode and electrolyte was constructed with the configuration: Al/C/electrolyte/C/Al. The electrochemical properties and ion transfer characteristics of the supercapacitor were investigated by the cyclic voltammetry (CV). Galvanostatic charge—discharge experiments exhibited good electrochemical reversibility and produced a specific capacitance value of 120 F g?1 at 1 A g?1. The symmetric supercapacitor system was retained almost 85% of its initial activity after 1000 cycle.  相似文献   

13.
In this work, we report the synthesis of porous activated carbon (AC). AC was derived from rotten carrot, at different values of activating temperature under inert atmosphere, employing chemical activation method and ZnCl2 as activation agent. On the basis of results observed by surface area and pore size analysis, effect of activation temperature on synthesized AC was determined. Other material properties such as morphology, thermal stability, vibrational response, and crystal structure of prepared AC were studied using standard techniques of material characterization. Further, the electrochemical performance of synthesized AC was studied as an electrode, in aqueous, organic and ionic liquid based electrolyte. It was found that the synthesized AC based electrode exhibits highest specific capacitance (135.5?F?g?1 at 10?mHz) in aqueous electrolyte and highest specific energy (29.1?Wh?kg?1 at 2.2?A?g?1) and specific power (142.5?kW?kg?1 at 2.2?A?g?1) in ionic liquid based electrolyte. This shows the suitability of synthesized material for use in energy storage applications.  相似文献   

14.
Porous CaC2-derived carbon (CCDC) was synthesized by one-step route from CaC2 in a freshly prepared chlorine environment at lower temperature. As-prepared CCDC was activated by H3PO4, ZnCl2, and KOH, respectively. The effects of the activation technology on the structure and morphology of CCDC were studied by X-ray diffraction, physical N2 adsorption/desorption, and transmission electron microscopy. It has been found that the pore structure and specific surface area of CCDC are apparently improved after activation; the CCDC activated by KOH especially showed an excellent specific surface area of 1,100?m2?g?1. The electrochemical performance of supercapacitors using activated CCDC as electrode active material was studied by cyclic voltammery, galvanostatic charge/discharge, and cycle life measurements. The results indicated that the CCDCs activated by H3PO4, ZnCl2, and KOH revealed enhanced capacitances of 172.6, 198.1, and 250.1?F?g?1 in 6?M KOH electrolyte, which were increased by 11.4, 27.8, and 61.2?% compared with the pristine CCDC (155?F?g?1), respectively. Furthermore, the supercapacitors using all activated CCDCs as electrode active material exhibited excellent cycle stability, and the specific capacitance for all activated CCDC samples had nearly no change after 5,000 cycles.  相似文献   

15.
In this study, NiS2 nanocubes were successfully synthesized by a novel facile solvothermal method using NiC2O4·2H2O microstructures and used as an electrode for high-performance supercapacitors. The electrochemical properties of the prepared NiS2 electrode were studied using galvanostatic charge–discharge analysis, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) studies. Its maximum specific capacitance was 2077 F g?1 at a constant current density of about 0.65 A g?1. Further, the EIS results confirmed the pseudocapacitive nature of the NiS2 electrode. The experimental results suggested that the NiS2 electro-active material demonstrates excellent electrochemical performance with high specific capacitance, low resistance, and excellent cycling stability.  相似文献   

16.
Mesoporous manganese oxides (MnO2) were synthesized via a facile chemical deposition strategy. Three kinds of basic precipitants including sodium carbonate (Na2CO3), sodium bicarbonate (NaHCO3), and sodium hydroxide (NaOH) were employed to adjust the microstructures and surface morphologies of MnO2 materials. The obtained MnO2 materials display different microstructures. Great differences are observed in their specific surface area and porosity properties. The microstructures and surface morphologies characteristics of MnO2 materials largely determine their pseudocapacitive behavior for supercapacitors. The MnO2 prepared with Na2CO3 precipitant exhibits the optimal microstructures and surface morphologies compared with the other two samples, contributing to their best electrochemical performances for supercapacitors when conducted either in the single electrode tests or in the capacitor measurements. The optimal MnO2 electrode exhibits a high specific capacitance (173 F g–1 at 0.25 A g?1), high-rate capability (123 F g?1 at 4 A g?1), and excellent cyclic stability (no capacitance loss after 5,000 cycles at 1 A g?1). The optimal activated carbon//MnO2 hybrid capacitor exhibits a wide working voltage (1.8 V), high-power and high-energy densities (1,734 W kg?1 and 20.9 Wh kg?1), and excellent cycling behavior (93.8 % capacitance retention after 10,000 cycles at 1 A g?1), indicating the promising applications of the easily fabricated mesoporous MnO2 for supercapacitors.  相似文献   

17.
Supercapacitive properties of synthesised metal oxides nanoparticles (MO where M = Ni, Co, Fe) integrated with multi-wall carbon nanotubes (MWCNT) on basal plane pyrolytic graphite electrode (BPPGE) were investigated. Successful modification of the electrode with the MWCNT-MO nanocomposite was confirmed with spectroscopic and microscopic techniques. Supercapacitive properties of the modified electrodes in sulphuric acid (H2SO4) and sodium sulphate (Na2SO4) electrolytes were investigated using cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic constant current charge–discharge (CD) techniques. The specific capacitance values followed similar trend with that of the cyclic voltammetry and the electrochemical impedance experiments and are slightly lower than values obtained using the galvanostatic charge–discharge cycling. MWCNT-NiO-based electrode gave best specific capacitance of 433.8 mF?cm?2 (ca 2,119 F?g?1) in H2SO4. The electrode exhibited high electrochemical reproducibility with no significant changes over 1,000 cyclic voltammetry cycles.  相似文献   

18.
High specific capacitance and low cost are the critical requirements for a practical supercapacitor. In this paper, a new activated carbon with high specific capacitance and low cost was prepared, employing cotton stalk as the raw material, by using the phosphoric acid (H3PO4) chemical activation method. The optimized conditions were as follows: the cotton stalk and activating agent with a mass ratio of 1:4 at an activation temperature of 800 °C for 2 h. The samples were characterized by nitrogen adsorption isotherms at 77 K. The specific surface area and pore volume of activated carbon were calculated by Brunauer–Emmett–Teller (BET) and t-plot methods. With these experimental conditions, an activated carbon with a BET surface area of 1,481 cm2?g?1 and micropore volume of 0.0377 cm3?g?1 was obtained. The capacitance of the prepared activated carbon was as high as 114 F?g?1.The results indicate that cotton stalk can produce activated carbon electrode materials with low cost and high performance for electric double-layer capacitor.  相似文献   

19.
Porous carbon with high specific surface area (SSA), a reasonable pore size distribution, and modified surface chemistry is highly desirable for application in energy storage devices. Herein, we report the synthesis of nitrogen‐containing mesoporous carbon with high SSA (1390 m2 g?1), a suitable pore size distribution (1.5–8.1 nm), and a nitrogen content of 4.7 wt % through a facile one‐step self‐assembly process. Owing to its unique physical characteristics and nitrogen doping, this material demonstrates great promise for application in both supercapacitors and encapsulating sulfur as a superior cathode material for lithium–sulfur batteries. When deployed as a supercapacitor electrode, it exhibited a high specific capacitance of 238.4 F g?1 at 1 A g?1 and an excellent rate capability (180 F g?1, 10 A g?1). Furthermore, when an NMC/S electrode was evaluated as the cathode material for lithium–sulfur batteries, it showed a high initial discharge capacity of 1143.6 mA h g?1 at 837.5 mA g?1 and an extraordinary cycling stability with 70.3 % capacity retention after 100 cycles.  相似文献   

20.
Hierarchical porous carbons (HPCs) with abundant mesopores have been prepared by a facile route from the starch that was pretreated by calcium acetate. The scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and N2 adsorption–desorption tests show that hierarchical porous carbons with bimodal mesopores have been obtained. Moreover, the pore sizes are tunable by simply adjusting the reactants ratio and carbonization temperature. The as-synthesized hierarchical porous carbon materials (HPCs-2-800) possesses the highest Brunauer-Emmett-Teller (BET)-specific surface area of 464 m2 g?1 and mesoporous volume of 0.663 cm3 g?1 at the carbonization temperature of 800 °C and starch to calcium acetate mass ratio of 2. Electrochemical measurements also display that the HPCs-2-800 electrodes have a high reversible capacity of 244 F g?1 at the current density of 0.1 A g?1 and 182 F g?1 at the current density of 10 A g?1. When the current density is elevated from 0.1 to 10 A g?1, the high capacitance retention of 74.6 % reveals a good rate performance. Long charge–discharge cycling measurements disclose good stabilities over 25,000 cycles at different current densities of 1–10 A g?1 (5000 cycles at each current density) for HPCs-2-800 electrode. The cycling results indicate a high capacitance retention of 99.6 % over 5000 charge–discharge cycles even at the current density of 10 A g?1. The excellent supercapacitive performances imply that HPCs-2-800 is a promising candidate for supercapacitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号