首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study a class of Steffensen-type algorithm for solving nonsmooth variational inclusions in Banach spaces. We provide a local convergence analysis under ω-conditioned divided difference, and the Aubin continuity property. This work on the one hand extends the results on local convergence of Steffensen’s method related to the resolution of nonlinear equations (see Amat and Busquier in Comput. Math. Appl. 49:13–22, 2005; J. Math. Anal. Appl. 324:1084–1092, 2006; Argyros in Southwest J. Pure Appl. Math. 1:23–29, 1997; Nonlinear Anal. 62:179–194, 2005; J. Math. Anal. Appl. 322:146–157, 2006; Rev. Colomb. Math. 40:65–73, 2006; Computational Theory of Iterative Methods, 2007). On the other hand our approach improves the ratio of convergence and enlarges the convergence ball under weaker hypotheses than one given in Hilout (Commun. Appl. Nonlinear Anal. 14:27–34, 2007).  相似文献   

2.
In this paper, two kinds of parametric generalized vector equilibrium problems in normed spaces are studied. The sufficient conditions for the continuity of the solution mappings to the two kinds of parametric generalized vector equilibrium problems are established under suitable conditions. The results presented in this paper extend and improve some main results in Chen and Gong (Pac J Optim 3:511–520, 2010), Chen and Li (Pac J Optim 6:141–152, 2010), Chen et al. (J Glob Optim 45:309–318, 2009), Cheng and Zhu (J Glob Optim 32:543–550, 2005), Gong (J Optim Theory Appl 139:35–46, 2008), Li and Fang (J Optim Theory Appl 147:507–515, 2010), Li et al. (Bull Aust Math Soc 81:85–95, 2010) and Peng et al. (J Optim Theory Appl 152(1):256–264, 2011).  相似文献   

3.
We provide a new semilocal convergence analysis of the Gauss–Newton method (GNM) for solving nonlinear equation in the Euclidean space. Using a combination of center-Lipschitz, Lipschitz conditions, and our new idea of recurrent functions, we provide under the same or weaker hypotheses than before (Ben-Israel, J. Math. Anal. Appl. 15:243–252, 1966; Chen and Nashed, Numer. Math. 66:235–257, 1993; Deuflhard and Heindl, SIAM J. Numer. Anal. 16:1–10, 1979; Guo, J. Comput. Math. 25:231–242, 2007; Häußler, Numer. Math. 48:119–125, 1986; Hu et al., J. Comput. Appl. Math. 219:110–122, 2008; Kantorovich and Akilov, Functional Analysis in Normed Spaces, Pergamon, Oxford, 1982), a finer convergence analysis. The results can be extended in case outer or generalized inverses are used. Numerical examples are also provided to show that our results apply, where others fail (Ben-Israel, J. Math. Anal. Appl. 15:243–252, 1966; Chen and Nashed, Numer. Math. 66:235–257, 1993; Deuflhard and Heindl, SIAM J. Numer. Anal. 16:1–10, 1979; Guo, J. Comput. Math. 25:231–242, 2007; Häußler, Numer. Math. 48:119–125, 1986; Hu et al., J. Comput. Appl. Math. 219:110–122, 2008; Kantorovich and Akilov, Functional Analysis in Normed Spaces, Pergamon, Oxford, 1982).  相似文献   

4.
We establish a new theorem of existence (and uniqueness) of solutions to the Navier-Stokes initial boundary value problem in exterior domains. No requirement is made on the convergence at infinity of the kinetic field and of the pressure field. These solutions are called non-decaying solutions. The first results on this topic dates back about 40 years ago see the references (Galdi and Rionero in Ann. Mat. Pures Appl. 108:361–366, 1976, Arch. Ration. Mech. Anal. 62:295–301, 1976, Arch. Ration. Mech. Anal. 69:37–52, 1979, Pac. J. Math. 104:77–83, 1980; Knightly in SIAM J. Math. Anal. 3:506–511, 1972). In the articles Galdi and Rionero (Ann. Mat. Pures Appl. 108:361–366, 1976, Arch. Ration. Mech. Anal. 62:295–301, 1976, Arch. Ration. Mech. Anal. 69:37–52, 1979, Pac. J. Math. 104:77–83, 1980) it was introduced the so called weight function method to study the uniqueness of solutions. More recently, the problem has been considered again by several authors (see Galdi et al. in J. Math. Fluid Mech. 14:633–652, 2012, Quad. Mat. 4:27–68, 1999, Nonlinear Anal. 47:4151–4156, 2001; Kato in Arch. Ration. Mech. Anal. 169:159–175, 2003; Kukavica and Vicol in J. Dyn. Differ. Equ. 20:719–732, 2008; Maremonti in Mat. Ves. 61:81–91, 2009, Appl. Anal. 90:125–139, 2011).  相似文献   

5.
6.
Second-order elliptic operators with unbounded coefficients of the form ${Au := -{\rm div}(a\nabla u) + F . \nabla u + Vu}$ in ${L^{p}(\mathbb{R}^{N}) (N \in \mathbb{N}, 1 < p < \infty)}$ are considered, which are the same as in recent papers Metafune et?al. (Z Anal Anwendungen 24:497–521, 2005), Arendt et?al. (J Operator Theory 55:185–211, 2006; J Math Anal Appl 338: 505–517, 2008) and Metafune et?al. (Forum Math 22:583–601, 2010). A new criterion for the m-accretivity and m-sectoriality of A in ${L^{p}(\mathbb{R}^{N})}$ is presented via a certain identity that behaves like a sesquilinear form over L p ×?L p'. It partially improves the results in (Metafune et?al. in Z Anal Anwendungen 24:497–521, 2005) and (Metafune et?al. in Forum Math 22:583–601, 2010) with a different approach. The result naturally extends Kato’s criterion in (Kato in Math Stud 55:253–266, 1981) for the nonnegative selfadjointness to the case of p ≠?2. The simplicity is illustrated with the typical example ${Au = -u\hspace{1pt}'' + x^{3}u\hspace{1pt}' + c |x|^{\gamma}u}$ in ${L^p(\mathbb{R})}$ which is dealt with in (Arendt et?al. in J Operator Theory 55:185–211, 2006; Arendt et?al. in J Math Anal Appl 338: 505–517, 2008).  相似文献   

7.
We establish a connection between optimal transport theory (see Villani in Topics in optimal transportation. Graduate studies in mathematics, vol. 58, AMS, Providence, 2003, for instance) and classical convection theory for geophysical flows (Pedlosky, in Geophysical fluid dynamics, Springer, New York, 1979). Our starting point is the model designed few years ago by Angenent, Haker, and Tannenbaum (SIAM J. Math. Anal. 35:61–97, 2003) to solve some optimal transport problems. This model can be seen as a generalization of the Darcy–Boussinesq equations, which is a degenerate version of the Navier–Stokes–Boussinesq (NSB) equations. In a unified framework, we relate different variants of the NSB equations (in particular what we call the generalized hydrostatic-Boussinesq equations) to various models involving optimal transport (and the related Monge–Ampère equation, Brenier in Commun. Pure Appl. Math. 64:375–417, 1991; Caffarelli in Commun. Pure Appl. Math. 45:1141–1151, 1992). This includes the 2D semi-geostrophic equations (Hoskins in Annual review of fluid mechanics, vol. 14, pp. 131–151, Palo Alto, 1982; Cullen et al. in SIAM J. Appl. Math. 51:20–31, 1991, Arch. Ration. Mech. Anal. 185:341–363, 2007; Benamou and Brenier in SIAM J. Appl. Math. 58:1450–1461, 1998; Loeper in SIAM J. Math. Anal. 38:795–823, 2006) and some fully nonlinear versions of the so-called high-field limit of the Vlasov–Poisson system (Nieto et al. in Arch. Ration. Mech. Anal. 158:29–59, 2001) and of the Keller–Segel for Chemotaxis (Keller and Segel in J. Theor. Biol. 30:225–234, 1971; Jäger and Luckhaus in Trans. Am. Math. Soc. 329:819–824, 1992; Chalub et al. in Mon. Math. 142:123–141, 2004). Mathematically speaking, we establish some existence theorems for local smooth, global smooth or global weak solutions of the different models. We also justify that the inertia terms can be rigorously neglected under appropriate scaling assumptions in the generalized Navier–Stokes–Boussinesq equations. Finally, we show how a “stringy” generalization of the AHT model can be related to the magnetic relaxation model studied by Arnold and Moffatt to obtain stationary solutions of the Euler equations with prescribed topology (see Arnold and Khesin in Topological methods in hydrodynamics. Applied mathematical sciences, vol. 125, Springer, Berlin, 1998; Moffatt in J. Fluid Mech. 159:359–378, 1985, Topological aspects of the dynamics of fluids and plasmas. NATO adv. sci. inst. ser. E, appl. sci., vol. 218, Kluwer, Dordrecht, 1992; Schonbek in Theory of the Navier–Stokes equations, Ser. adv. math. appl. sci., vol. 47, pp. 179–184, World Sci., Singapore, 1998; Vladimirov et al. in J. Fluid Mech. 390:127–150, 1999; Nishiyama in Bull. Inst. Math. Acad. Sin. (N.S.) 2:139–154, 2007).  相似文献   

8.
Based on the very recent work by Dang and Gao (Invers Probl 27:1–9, 2011) and Wang and Xu (J Inequal Appl, doi:10.1155/2010/102085, 2010), and inspired by Yao (Appl Math Comput 186:1551–1558, 2007), Noor (J Math Anal Appl 251:217–229, 2000), and Xu (Invers Probl 22:2021–2034, 2006), we suggest a three-step KM-CQ-like method for solving the split common fixed-point problems in Hilbert spaces. Our results improve and develop previously discussed feasibility problem and related algorithms.  相似文献   

9.
We present new sufficient conditions for the semilocal convergence of Newton’s method to a locally unique solution of an equation in a Banach space setting. Upper bounds on the limit points of majorizing sequences are also given. Numerical examples are provided, where our new results compare favorably to earlier ones such as Argyros (J Math Anal Appl 298:374–397, 2004), Argyros and Hilout (J Comput Appl Math 234:2993-3006, 2010, 2011), Ortega and Rheinboldt (1970) and Potra and Pták (1984).  相似文献   

10.
In this paper, we consider a composite iterative algorithm with errors for approximating a common fixed points of non-self asymptotically nonexpansive mappings in the framework of Hilbert spaces. Our results improve and extend Chidume et al. (J. Math. Anal. Appl. 280:364–374, [2003]), Shahzad (Nonlinear Anal. 61:1031–1039, [2005]), Su and Qin (J. Appl. Math. Comput. 24:437–448, [2007]) and many others.  相似文献   

11.
This article continues Ros?anowski and Shelah (Int J Math Math Sci 28:63–82, 2001; Quaderni di Matematica 17:195–239, 2006; Israel J Math 159:109–174, 2007; 2011; Notre Dame J Formal Logic 52:113–147, 2011) and we introduce here a new property of (<λ)-strategically complete forcing notions which implies that their λ-support iterations do not collapse λ + (for a strongly inaccessible cardinal λ).  相似文献   

12.
13.
This paper continues the work about the nonexistence of some complete metrics on the product of two manifolds studied by Tam and Yu (Asian J. Math., 14(2):235–242, 2010), and is motivated by the result of Tosatti (Commun. Anal. Geom., 15(5):1063–1086, 2007). We generalize the corresponding results of Tam and Yu (Asian J. Math., 14(2):235–242, 2010) to the almost-Hermitian case.  相似文献   

14.
In this paper we study gradient estimates for the positive solutions of the porous medium equation: $$u_t=\Delta u^m$$ where m>1, which is a nonlinear version of the heat equation. We derive local gradient estimates of the Li–Yau type for positive solutions of porous medium equations on Riemannian manifolds with Ricci curvature bounded from below. As applications, several parabolic Harnack inequalities are obtained. In particular, our results improve the ones of Lu, Ni, Vázquez, and Villani (in J. Math. Pures Appl. 91:1–19, 2009). Moreover, our results recover the ones of Davies (in Cambridge Tracts Math vol. 92, 1989), Hamilton (in Comm. Anal. Geom. 1:113–125, 1993) and Li and Xu (in Adv. Math. 226:4456–4491, 2011).  相似文献   

15.
Northcott’s book Finite Free Resolutions (1976), as well as the paper (J. Reine Angew. Math. 262/263:205–219, 1973), present some key results of Buchsbaum and Eisenbud (J. Algebra 25:259–268, 1973; Adv. Math. 12: 84–139, 1974) both in a simplified way and without Noetherian hypotheses, using the notion of latent nonzero divisor introduced by Hochster. The goal of this paper is to simplify further the proofs of these results, which become now elementary in a logical sense (no use of prime ideals, or minimal prime ideals) and, we hope, more perspicuous. Some formulations are new and more general than in the references (J. Algebra 25:259–268, 1973; Adv. Math. 12: 84–139, 1974; Finite Free Resolutions 1976) (Theorem 7.2, Lemma 8.2 and Corollary 8.5).  相似文献   

16.
The purpose of this article is to propose a modified hybrid projection algorithm and prove a strong convergence theorem for closed and quasi-strict pseudo-contractions. Its results hold in reflexive, strictly convex and smooth Banach spaces with the property (K). The results of this paper improve and extend the corresponding results of Matsushita and Takahashi (J. Approx. Theory 134:257–266, 2005), Qin and Su (Nonlinear Anal. 67:1958–1965, 2007), Marino and Xu (J. Math. Anal. Appl. 329:336–346, 2007) and others.  相似文献   

17.
In this paper, we consider an n-species competition predator-prey system on time scales with Holling-type II functional response and multiple exploited (or harvesting) terms, which contains n?1 competing preys and one predator. By using the continuation theorem based on Gaines and Mawhin’s coincidence degree theory, easily verifiable criteria are established for global existence of multiple positive periodic solutions to the above system. In addition, our results generalize the corresponding results of Zhang and Hou (Nonlinear Anal. (RWA) 11:1560–1571, 2010), Fan and Wang (J. Math. Anal. Appl. 262:179–190, 2001), Ding and Lu (Appl. Math. Model. 33:2748–2756, 2009).  相似文献   

18.
We prove that the range of exponents in Mockenhaupt’s restriction theorem for Salem sets (Geom Funct Anal 10:1579–1587, 2000), with the endpoint estimate due to Bak and Seeger (Math Res Lett 18:767–781, 2011), is optimal.  相似文献   

19.
Z. Ercan 《Positivity》2014,18(2):219-221
A new and simple proof of the main result of the paper “Laterally closed lattice homomorphisms” by Toumi and Toumi (J Math Anal Appl 324:1178–1194, 2006) is given following the paper “Extension of Riesz homomorphisms, I” by Buskes (J Aust Math Soc Ser A 39(1):107–120, 1985).  相似文献   

20.
Y. Zhang  S. J. Li  M. H. Li 《Positivity》2012,16(4):751-770
In this paper, by using the finite intersection property, we first obtain two types of minimax inequalities for set-valued mappings, which improve and generalize the corresponding results in Ferro (J Optim Theory Appl 60:19?C31, 1989) and Li et?al. (J Math Anal Appl 281:707?C723, 2003). Then, by using the Ky Fan lemma and the Kakutani?CFan?CGlicksberg fixed point theorem, we also investigate some Ky Fan minimx inequalities for set-valued mappings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号