首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Here the authors developed a two-dimensional two-temperature chemical non-equilibrium (2T-NCE) model of Ar–CO2–H2 inductively coupled thermal plasmas (ICTP) around atmospheric pressure (760 torr). Assuming 22 different particles in this model and by solving mass conservation equations for each particle, considering diffusion, convection and net production terms resulting from 198 chemical reactions, chemical non-equilibrium effects were taken into account. Species density of each particle or simply particle composition was also derived from the mass conservation equation of each one taking the non chemical equilibrium effect into account. Transport and thermodynamic properties of Ar–CO2–H2 thermal plasmas were self-consistently calculated using the first order approximation of the Chapman–Enskog method at each iteration point implementing the local particle composition and temperature. Calculations at reduced pressure (500 and 300 torr) were also done to investigate the effect of pressure on non-equilibrium condition. Results obtained by the present model were compared with results from one temperature chemical equilibrium (1T-CE) model, one-temperature chemically non equilibrium (1T-NCE) model and finally with 2T-NCE model of Ar–N2–H2 plasmas. Investigation shows that consideration of non-chemical equilibrium causes the plasma volume radially wider than CE model due to particle diffusion. At low pressure with same input power, presence of diffusion is relatively stronger than at high pressure. Comparison of present reactive model with non-reactive Ar–N2–H2 plasmas shows that maximum temperature reaches higher in reactive C–H–O molecular system than non-reactive plasmas due to extra contribution of reaction heat.  相似文献   

2.
Thermodynamic and transport properties of two-temperature oxygen plasmas are presented. Variation of species densities, mass densities, specific heat, enthalpy, viscosity, thermal conductivity, collision frequency and electrical conductivity as a function of temperature, pressure and different degree of temperature non-equilibrium are computed. Reactional, electronic and heavy particle components of the total thermal conductivity are discussed. To meet practical needs of fluid-dynamic simulations, temperatures included in the computation range from 300 K to 45,000 K, the ratio of electron temperature (T e) to the heavy particle temperature (T h) ranges from 1 to 30 and the pressure ranges from 0.1 to 7 atmospheres. Results obtained for thermodynamic equilibrium (T e = T h) under atmospheric pressure are compared with published results obtained for similar conditions. Observed overall agreement is reasonable. Slight deviations in some properties may be attributed to the values used for collision integral data and for the two temperature formulations used. An approach for computing properties under chemical non-equilibrium and associated deviations from two-temperature results under similar conditions are discussed.  相似文献   

3.
A new two-temperature chemical kinetics model for nitrogen plasmas is presented. The model is used together with the vibrationally-specific collisional-radiative model to study the effects of vibrational nonequilibrium distributions on the chemical composition of two-temperature atmospheric pressure nitrogen plasmas. It is found that over a wide range of conditions the vibrational levels follow Boltzmann distributions and that the vibrational temperature Tv is well approximated by gas temperature Tg at low electron number densities and by electron temperature Te at high electron number densities. This result suggests that simple kinetic models with two-temperature rate coefficients can be used to reliably model nonthermal plasmas. The calculation also yields a surprising result that, for a given constant gas temperature, the steady-state electron number density exhibits an S-shaped dependence on the electron temperature. This S-shaped behavior is caused by competing ionization, charge transfer reactions, two-body dissociative recombination, and three-body electron recombination reactions, and therefore is characteristic of molecular plasmas.  相似文献   

4.
The species densities and the thermal and chemical nonequilibrium phenomena in an Ar–H2 radio frequency inductively coupled plasma reactor used for hydrogenation of materials have been investigated through numerical simulation. The mathematical model consists of a two-temperature fluid dynamics model and a chemical kinetics model that takes into account the effect of local chemical nonequilibrium. Computations are carried out for the rf plasma running at 11.7 kW and 27 kPa for different Ar–H2 mixtures and for pure argon. Predicted results for the electron and heavy-species temperatures, the species densities, as well as the degree of thermal and chemical nonequilibrium, are presented in detail. It is found that the electron and hydrogen atom densities in the reactor and in the near-wall region of the torch are strongly altered by nonequilibrium effects. The hydrogen atom density remains high in the reactor zone, and peaks in a region that has been found to be attractive for material processing. Deviations from thermal and chemical equilibrium are greatly reduced by the addition of hydrogen to an argon plasma.  相似文献   

5.
Ionic liquids (ILs), especially basic ILs with unique physicochemical properties, have wide application in catalysis. Using basic ILs as catalysts for the conversion of cheap, abundant, nontoxic, and renewable CO2 into value-added organic carbonates is highly significant in view of environmental and economic issues. This review aims at giving a detailed overview on the recent advances on basic ILs promoted chemical transformation of CO2 to cyclic and linear carbonates. The structures of various basic ILs, as well as the basic ILs promoted reactions for the transformation of CO2 to organic carbonates are discussed in detail, including the reaction conditions, the yields of target products, the catalytic activities of basic ILs and the reaction mechanism.  相似文献   

6.
Plasma Chemistry and Plasma Processing - A 2D two-temperature chemical non-equilibrium model has been developed to investigate the plasma characteristics inside a DC arc plasma torch of argon. In...  相似文献   

7.
Excitation of electronic states of the N2 molecule by electron impact is recognized as an essential process in nitrogen plasmas that strongly impacts their chemical reactivity and other properties. Many surface and coating technologies are based on radio-frequency plasma discharges in nitrogen. In this paper the electron impact excitation rate coefficients for singlet and triplet electronic states of the N2 molecule have been calculated in non-equilibrium conditions in the presence of a radio-frequency electric field. A Monte Carlo simulation has been performed in order to determine non-equilibrium electron energy distribution functions within one period of the electric field. By using these distribution functions, the excitation rate coefficients have been obtained in the frequency range from 13.56 up to 500 MHz, at reduced electric field values from 200 to 700 Td.  相似文献   

8.
In this paper a two-temperature plasma model is established and applied to the injection of cold gases into an atmospheric-pressure, high-intensity argon arc. The required nonequilibrium plasma composition and the non-equilibrium transport properties are also calculated. The results show that the arc becomes constricted at the location of gas injection due to thermal and fluid dynamic effects of the injected cold flow. Enhanced Joule heating in the constricted arc path raises the electron as well as the heavy-particle temperatures. This temperature increase resists, via secondary effects, the penetration of the cold gas into the hot arc core which behaves more or less as a solid body as far as the injected flow is concerned. The temperature discrepancy between electrons and heavy particles is most severe at the location of cold flow injection, a finding which may have important consequences on chemical reactions in an arc plasma reactor.  相似文献   

9.
An AC-pulsed tornado gliding arc plasma was employed for CO2 conversion via CO2 decomposition and dry reforming reactions. A stable and high-efficient constant arc length discharge mode was obtained in this plasma reactor. And then, CO2 conversion was studied under this discharge mode. In the case of CH4/CO2 = 0, CO2 was converted to CO and O2 via the CO2 decomposition reaction. Energy efficiency of 29 % was attained at CO2 conversion of 6 %. With strong reducing agent CH4 added into CO2, the main contributor of CO2 conversion changed from CO2 decomposition to dry reforming of CH4. Conversions of CH4 and CO2, energy efficiency and energy cost changed sharply at CO2/CH4 ratios lower than 1/4, while they changed slowly at CH4/CO2 ratios above 1/4. In the case of CH4/CO2 = 2/3, energy efficiency of 68 % and syngas energy cost of 1.6 eV/mole were achieved at CH4 conversion of 29 % and CO2 conversion of 22 %.  相似文献   

10.
Five-component reciprocal systems Na,K∥Cl,CO3,MoO4,WO4 and Na,K∥F,CO3,MO4,WO4 have been studied by differential thermal analysis (DTA) and X-ray powder diffraction (XPD). The systems have been triangulated to phase simplexes. The main reciprocal and complex-formation reactions have been revealed. The stability of [Na,K]2CO3, Na2[Mo,W]O4, and K2[Mo,W]O4 binary solid solutions and the nonexistence of quintuple invariant points in the title systems have been verified.  相似文献   

11.
A technique for calculation of phase equilibria over a wide range of temperatures and pressures for fluid systems, where chemical interactions lead to the formation of ionic species, was developed. A hole quasichemical model was modified to account for chemical reactions and electrostatic interactions in the liquid phase. The densities and dielectric permittivity as function of a solution composition was taken into account in describing the electrostatic contribution to the Gibbs energy (Pitzer approximation) and Born contribution, that is required for thermodynamic consistency of simulation results. A method of assessing the appropriate relationships for mixtures of ammonia-water and ternary solutions was suggested. Calculations of the phase behavior of the H2O-NH3 system in the entire range of concentrations in the temperature interval 373–588 K at pressures up to 200 bar, and also of H2O-NH3-CO2 system containing NH3 to 30 mol% and CO2 up to 14 mol% in the temperature range 373–473 K at pressures to 88 bar gave satisfactory agreement with experimental data. Concentrations of the molecular and ionic individuals in the liquid phase, depending on the overall composition of the mixture were evaluated.  相似文献   

12.
Potassium-based sorbents using γ-Al2O3 or TiO2 as a support or an additive material have disadvantages in terms of their thermal stability and cyclic CO2 capture. To overcome the shortcomings of these sorbents, a novel potassium-based sorbent (KSnI30) using SnO2 was developed in this study. The KSnI30 sorbent formed only K2CO3 and SnO2 phases without any inactive alloy species even after calcination at high temperatures (500–700 °C), indicating the good thermal stability of the KSnI30 sorbent regardless of the calcination temperature. Furthermore, the KSnI30 sorbent has an excellent regeneration property (above 98 %), as well as high CO2 capture capacities (89–94 mg CO2/g sorbent). Its excellent regeneration property is due to the formation of a KHCO3 phase without by-products during CO2 sorption. These results of the present study demonstrate that the SnO2 shows promise as a new support or an additive material to replace TiO2 and γ-Al2O3 in the preparation of a regenerable potassium-based sorbent for post-combustion CO2 capture with good thermal stability and excellent regeneration property.  相似文献   

13.
The increasingly evident impact of anthropogenic CO2 emissions on climate change and associated environmental effects is stimulating the search for viable methods to remove this gas. One of the most promising strategies is the long-term storage of CO2 in inert, insoluble and thermodynamically-stable materials. This strategy mimics the natural reactions that transform silicates into carbonates regulating the cycle of CO2 on the surface of the Earth, operating on a geological time-scale. Consequently, the aim is to accelerate these reactions to be applicable on the timescale of human lives. We present the various technologies developed or proposed to date, based on this particular approach. The principal limiting factor is that high pressures and temperatures are required to produce appropriate materials capable of CO2 sequestration and storage. Nevertheless, the synthetic materials known as aerogels can be modified in shape, size and chemical functionality so as to catalyse the process of CO2 elimination through silicates (of Ca or Mg), considerably reducing the reaction time and working at atmospheric pressure and temperature.  相似文献   

14.
This paper presents a modeling attempt related to low-pressure plasma spraying processes which find increasing applications for materials processing. After a review of the various models for ionization and recombination processes, a two-temperature model for argon plasmas in chemical (ionization) nonequilibrium is established using finite rate chemistry. Results of sample calculations manifest departures from kinetic as well as chemical equilibrium, demonstrating that the conventional models based on the LTE (local thermodynamic equilibrium) assumption cannot provide proper prediction for low-pressure plasma jets.  相似文献   

15.
Net emission coefficients of radiation were calculated for isothermal plasmas of air and SF6 as a function of the plasma temperature 5,000–30,000 K and the arc radius (0.01–10 cm) at various plasma pressures. Calculations take into account continuum and line radiations, special attention has also been taken to influence of molecular species in case of the air plasmas. It has been found that the molecular bands of O2, N2, N2 +, NO and NO+ have very strong effect on the net emission coefficients at low temperatures (below 10,000 K). In case of SF6, effect of PTFE admixture on the net emission coefficients was also studied. It follows from the calculations that the net emission coefficients vary very little with various admixtures of PTFE. Values of net emission coefficients if SF6 plasma calculated for various spectral regions were compared.  相似文献   

16.
The aim of this study is to check if it is possible to use the combined diffusion coefficients introduced by Murphy at equilibrium in a two-temperature model (electron temperature Te different from that of heavy species Th), such as that defined by Devoto and Bonnefoi for transport properties. On the one hand, the two-temperature (2-T) theory of transport properties was established by Devoto and Bonnefoi by separating electrons and heavy species because of their mass difference. Their simplified theories allow the calculation of transport coefficients (except diffusion) out of thermal equilibrium, but it has to be noted that when Te tends toward Th, the results are those obtained with an equilibrium calculation. On the other hand, Murphy's combined diffusion coefficients describe the diffusive mixing of two nonreactive ionized gases at equilibrium. First, the exact combined diffusion coefficients of Murphy are calculated for an Ar–N2 (50 wt.%) mixture at atmospheric pressure. Expressions of combined diffusion coefficients are then obtained by using the simplified theory of Bonnefoi at thermal equilibrium. The results of the calculation of combined diffusion coefficients from the simplified theory of transport properties, assuming Te=Th, are compared with those of Murphy at equilibrium. It is shown that large discrepancies occur as soon as the ionization degree is over 10%. These results prove that the simplified 2-T theory of transport coefficients cannot be used for the treatment of diffusion, probably because the mass flux of electrons is no longer constrained. Thus, a new theory of transport coefficients has to be developed, taking into account the coupling of electrons and heavy species.  相似文献   

17.
Ab initio many-body perturbation theory (MP2/6-311++G(,dp)), density functional theory (B3LYP/6-31++G(d,p)) and self-consistent reaction field (IEF-PCM UA HF/6-31G(d)) calculations have been used to study the CO2 capture reagents NH3, 2-hydroxyethylamine (MEA), diaminoethane (EN), 2-amino-1-propanol (2A1P), diethanolamine (DEA), N-methyl-2-hydroxyethylamine (N-methylMEA), 2-amino-2-methyl-1-propanol (AMP), trishydroxymethylaminomethane (tris), piperazine (PZ) and piperidine (PD). This study involved full conformational searches of the capture amines in their native and protonated forms, and their carbamic acid and carbamate derivatives. Using this data, we were able to compute Boltzmann-averaged thermodynamic values for the amines, carbamates and carbamic acid derivatives, as well as equilibrium constants for a series of ‘universal’ aqueous capture reactions. Important findings include (i) relative pK a values for the carbamic acid derivatives are a useful measure of carbamate stability, due to a particular chemical resonance which is also manifest in short computed N–CO2H bonds at both levels of theory, (ii) the computational results for sterically hindered amines such as AMP and tris are consistent with these species forming carbamates which readily hydrolyse and (iii) the amine-catalysed reaction between OH and CO2 to generate bicarbonate correlates with amine pK a. Thermodynamic data from the ab initio computations predicts that the heterocycles PD and PZ and the acyclic sorbent EN are good choices for a capture solvent. AMP and tris perform poorly in comparison.  相似文献   

18.
CBS-QB3, two simplified and less computationally demanding versions of CBS-QB3, DFT-B3LYP, and HF quantum chemistry methods have been used in conjunction with the CPCM continuum solvent model to calculate the free energies of proton exchange reactions in water solution following an isodesmic reaction approach. According to our results, the precision of the predicted pK a values when compared to experiment is equivalent to that of the thermodynamic cycles that combine gas-phase and solution-phase calculations. However, in the aqueous isodesmic reaction schema, the accuracy of the results is less sensitive to the presence of explicit water molecules and to the global charges of the involved species since the free energies of solvation are not required. In addition, this procedure makes easier the prediction of pK a values for molecules that undergo large conformational changes in solvation process and makes possible the pK a prediction of unstable species in gas-phase such as some zwitterionic tautomers. The successive pK a values of few amino acids corresponding to the ionization of the α-carboxylic acid and α-amine groups, which is one of the problematic cases for thermodynamic cycles, were successfully calculated by employing the aqueous isodesmic reaction yielding mean absolute deviations of 0.22 and 0.19 pK a units for the first and second ionization processes, respectively.  相似文献   

19.
Plasma-chemical conversion of hydrogen sulfide in the atmosphere of methane with addition of CO2 and O2 in the nonequilibrium plasma of barrier discharge is studied. The degree of hydrogen sulfide removal reaches 97 vol%. The degree of methane transformation does not exceed 14 vol%. Gaseous reaction products contain hydrogen, carbon oxides, and C2–C4 hydrocarbons. The energy consumption for the removal of hydrogen sulfide ranges from 84 to 182 eV molecule?1. The process is accompanied by the formation of deposits on the surface of reactor electrodes. The composition of deposits is studied. Organic linear and cyclic polysulfides, as well as sulfones of various structures are identified in soluble components of deposits. Based on the experimental data and the results of theoretical estimates, a radical chain reaction mechanism is proposed. It is shown that the formation of polysulfide compounds with terminal alkyl and oxygen-containing groups is provided by the reactions between atomic oxygen, SH, and alkyl radical which were formed in the initial stages of processes in the non-equilibrium plasma of barrier discharge.  相似文献   

20.
The main reactions yielding hydrogen are the recombination of hydrogen atoms on copper clusters and methyl formate decomposition. Methyl formate results from the interaction between the linear methoxy group and the formate complex located on CuO. The source of CO2 appearing in the gas phase is the formate complex, and the source of CO is methyl formate. The rates of methoxy group conversion and product formation over supports (ZrO2, CeO2, Ce0.8Zr0.2O2) and copper-containing catalysts (5%Cu/CeO2, 5%Cu/ZrO2, 2%Cu/Ce0.8Zr0.2O2, 2%Cu/Ce0.1Y0.1Zr0.8) are compared. The dominant process in methoxy group conversion over the supports and copper-containing catalysts is methanol decomposition to H2 and CO and to H2 and CO2, respectively. The methoxy group conversion rate is proportional to the H2 and CO2 formation rate and is determined by the concentration of supported copper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号