首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
任志茹 《计算数学》2013,35(3):305-322
三阶线性常微分方程在天文学和流体力学等学科的研究中有着广泛的应用.本文介绍求解三阶线性常微分方程由Sinc方法离散所得到的线性方程组的结构预处理方法.首先, 我们利用Sinc方法对三阶线性常微分方程进行离散,证明了离散解以指数阶收敛到原问题的精确解.针对离散后线性方程组的系数矩阵的特殊结构, 提出了结构化的带状预处理子,并证明了预处理矩阵的特征值位于复平面上的一个矩形区域之内.然后, 我们引入新的变量将三阶线性常微分方程等价地转化为由两个二阶线性常微分方程构成的常微分方程组, 并利用Sinc方法对降阶后的常微分方程组进行离散.离散后线性方程组的系数矩阵是分块2×2的, 且每一块都是Toeplitz矩阵与对角矩阵的组合.为了利用Krylov子空间方法有效地求解离散后的线性方程组,我们给出了块对角预处理子, 并分析了预处理矩阵的性质.最后, 我们对降阶后二阶线性常微分方程组进行了一些比较研究.数值结果证实了Sinc方法能够有效地求解三阶线性常微分方程.  相似文献   

2.
邢永丽  王迪 《大学数学》2021,37(1):108-111
当线性方程组中含有未知参数时,线性方程组解的情况往往需要进行讨论.本文给出了在非齐次线性方程组系数矩阵中含有未知参数且系数行列式等于零的情况下,判定对应参数值下方程组的解是无解还是有无穷多解的两个判定定理.和以前的方法比较,本文提出的讨论方法更直接.  相似文献   

3.
The properties of a mathematical programming problem that arises in finding a stable (in the sense of Tikhonov) solution to a system of linear algebraic equations with an approximately given augmented coefficient matrix are examined. Conditions are obtained that determine whether this problem can be reduced to the minimization of a smoothing functional or to the minimal matrix correction of the underlying system of linear algebraic equations. A method for constructing (exact or approximately given) model systems of linear algebraic equations with known Tikhonov solutions is described. Sharp lower bounds are derived for the maximal error in the solution of an approximately given system of linear algebraic equations under finite perturbations of its coefficient matrix. Numerical examples are given.  相似文献   

4.
1引言在电离层动力学和飞行器设计等工程领域,经常遇到具有周期边界条件的椭圆型或抛物型偏微分方程的求解问题.通过适当的离散逼近,此类问题可以转化为大型块状三对角线性方程组的求解问题.1977年,William S.Helliwell提出了一种(Pseudo- Elimination)方法来求解系数矩阵为块状三对角矩阵的线性代数方程组,这种方法具有迭代收敛快及存贮量少等优点.胡家赣等在系数矩阵为对称正定矩阵和对角优势L-矩阵的情况下证明了一次PE方法和一次PE_k方法的收敛性,指出了一次PE方法比  相似文献   

5.
In this article, a new method is presented for the solution of high‐order linear partial differential equations (PDEs) with variable coefficients under the most general conditions. The method is based on the approximation by the truncated double Chebyshev series. PDE and conditions are transformed into the matrix equations, which corresponds to a system of linear algebraic equations with the unknown Chebyshev coefficients, via Chebyshev collocation points. Combining these matrix equations and then solving the system yields the Chebyshev coefficients of the solution function. Some numerical results are included to demonstrate the validity and applicability of the method. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009  相似文献   

6.
Divergence-free wavelet solution to the Stokes problem   总被引:2,自引:0,他引:2  
In this paper, we use divergence-free wavelets to give an adaptive solution to the velocity field of the Stokes problem. We first use divergence-free wavelets to discretize the divergence-free weak formulation of the Stokes problem and obtain a discrete positive definite linear system of equations whose coefficient matrix is quasi-sparse; Secondly, an adaptive scheme is used to solve the discrete linear system of equations and the error estimation and complexity analysis are given.  相似文献   

7.
When the artificial compressibility method in conjunction with high-order upwind compact finite difference schemes is employed to discretize the steady-state incompressible Navier-Stokes equations, in each pseudo-time step we need to solve a structured system of linear equations approximately by, for example, a Krylov subspace method such as the preconditioned GMRES. In this paper, based on the special structure and concrete property of the linear system we construct a structured preconditioner for its coefficient matrix and estimate eigenvalue bounds of the correspondingly preconditioned matrix. Numerical examples are given to illustrate the effectiveness of the proposed preconditioning methods.  相似文献   

8.
1. IntroductionConsider the large sparse system of linear equationsAx = b, (1.1)where, for a fixed positive integer cr, A e L(R") is a symmetric positive definite (SPD) matrir,having the bloCked formx,b E R" are the uDknwn and the known vectors, respectively, having the correspondingblocked formsni(ni S n, i = 1, 2,', a) are a given positthe integers, satisfying Z ni = n. This systemi= 1of linear equations often arises in sultable finite element discretizations of many secondorderseifad…  相似文献   

9.
本文研究了常系数线性分数阶微分方程组的求解问题.利用逆Laplace变换,Jordan标准矩阵和最小多项式,得到矩阵变量Mittag-Leffler函数的三种不同的计算方法,包含了常系数线性一阶微分方程组的解.  相似文献   

10.
This article develops an efficient solver based on collocation points for solving numerically a system of linear Volterra integral equations (VIEs) with variable coefficients. By using the Euler polynomials and the collocation points, this method transforms the system of linear VIEs into the matrix equation. The matrix equation corresponds to a system of linear equations with the unknown Euler coefficients. A small number of Euler polynomials is needed to obtain a satisfactory result. Numerical results with comparisons are given to confirm the reliability of the proposed method for solving VIEs with variable coefficients.  相似文献   

11.
Construction of binary and ternary self-orthogonal linear codes   总被引:1,自引:0,他引:1  
We construct new binary and ternary self-orthogonal linear codes. In order to do this we use an equivalence between the existence of a self-orthogonal linear code with a prescribed minimum distance and the existence of a solution of a certain system of Diophantine linear equations. To reduce the size of the system of equations we restrict the search for solutions to solutions with special symmetry given by matrix groups. Using this method we found at least six new distance-optimal codes, which are all self-orthogonal.  相似文献   

12.
In this paper, we consider the solution of a large linear system of equations, which is obtained from discretizing the Euler–Lagrange equations associated with the image deblurring problem. The coefficient matrix of this system is of the generalized saddle point form with high condition number. One of the blocks of this matrix has the block Toeplitz with Toeplitz block structure. This system can be efficiently solved using the minimal residual iteration method with preconditioners based on the fast Fourier transform. Eigenvalue bounds for the preconditioner matrix are obtained. Numerical results are presented. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
In this study, a Hermite matrix method is presented to solve high‐order linear Fredholm integro‐differential equations with variable coefficients under the mixed conditions in terms of the Hermite polynomials. The proposed method converts the equation and its conditions to matrix equations, which correspond to a system of linear algebraic equations with unknown Hermite coefficients, by means of collocation points on a finite interval. Then, by solving the matrix equation, the Hermite coefficients and the polynomial approach are obtained. Also, examples that illustrate the pertinent features of the method are presented; the accuracy of the solutions and the error analysis are performed. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 1707–1721, 2011  相似文献   

14.
In this study, a practical matrix method is presented to find an approximate solution for high‐order linear Fredholm integro‐differential equations with piecewise intervals under the initial boundary conditions in terms of Taylor polynomials. The method converts the integro differential equation to a matrix equation, which corresponds to a system of linear algebraic equations. Error analysis and illustrative examples are included to demonstrate the validity and applicability of the technique. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2010 27: 1327–1339, 2011  相似文献   

15.
For large sparse systems of linear equations iterative techniques are attractive. In this paper, we study a splitting method for an important class of symmetric and indefinite system. Theoretical analyses show that this method converges to the unique solution of the system of linear equations for all t>0 (t is the parameter). Moreover, all the eigenvalues of the iteration matrix are real and nonnegative and the spectral radius of the iteration matrix is decreasing with respect to the parameter t. Besides, a preconditioning strategy based on the splitting of the symmetric and indefinite coefficient matrices is proposed. The eigensolution of the preconditioned matrix is described and an upper bound of the degree of the minimal polynomials for the preconditioned matrix is obtained. Numerical experiments of a model Stokes problem and a least‐squares problem with linear constraints presented to illustrate the effectiveness of the method. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
In this paper, a collocation method is presented to find the approximate solution of high‐order linear complex differential equations in rectangular domain. By using collocation points defined in a rectangular domain and the Bessel polynomials, this method transforms the linear complex differential equations into a matrix equation. The matrix equation corresponds to a system of linear equations with the unknown Bessel coefficients. The proposed method gives the analytic solution when the exact solutions are polynomials. Numerical examples are included to demonstrate the validity and applicability of the technique and the comparisons are made with existing results. The results show the efficiency and accuracy of the present work. All of the numerical computations have been performed on a computer using a program written in MATLAB v7.6.0 (R2008a). Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
定义于球面的浅水方程能够很好地描述浅齐次的不可压缩非黏滞流体层的性状,它在全球大气模型、海洋数字模型和天气预报的数值计算中都有广泛的应用,浅水方程的一般形式如下:  相似文献   

18.
In this paper, the problem of solving the parabolic partial differential equations subject to given initial and nonlocal boundary conditions is considered. We change the problem to a system of Volterra integral equations of convolution type. By using Sinc-collocation method, the resulting integral equations are replaced by a system of linear algebraic equations. The convergence analysis is included, and it is shown that the error in the approximate solution is bounded in the infinity norm by the condition number of the coefficient matrix multiplied by a factor that decays exponentially with the size of the system. Some examples are considered to illustrate the ability of this method.  相似文献   

19.
Petrov-Galerkin 方法是研究Cauchy型奇异积分方程的最基本的数值方法. 用此方法离散积分方程可得一系数矩阵是稠密的线性方程组. 如果方程组的阶比较大, 则求解此方程组所需要的计算复杂度则会变得很大. 因此, 发展此类方程的快速数值算法就变成了必然. 该文将就对带常系数的Cauchy型奇异积分方程给出一种快速数值方法. 首先用一稀疏矩阵来代替稠密系数矩阵, 其次用数值积分公式离散上述方程组得到其完全离散的形式,然后用多层扩充方法求解此完全离散的线性方程组. 证明经过上述过程得到方程组的逼进解仍然保持了最优阶, 并且整个过程所需要的计算复杂度是拟线性的. 最后通过数值实验证明结论.  相似文献   

20.
A numerically stable simplex algorithm for calculating the restricted Chebyshev solution of overdetermined systems of linear equations is described. In this algorithm minimum computer storage is required and no conditions are imposed on the coefficient matrix or on the right hand side of the system of equations. Also a new way of implementing a triangular decomposition method to the basis matrix is used. The ordinary Chebyshev solution, the one-sided Chebyshev solutions and the Chebyshev approximation by non-negative functions are obtained as special cases in this algorithm. Numerical results are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号