首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular dynamics simulations are used to investigate the influence of molecular-scale surface roughness on the slip behavior in thin liquid films. The slip length increases almost linearly with the shear rate for atomically smooth rigid walls and incommensurate structures of the liquid/solid interface. The thermal fluctuations of the wall atoms lead to an effective surface roughness, which makes the slip length weakly dependent on the shear rate. With increasing the elastic stiffness of the wall, the surface roughness smoothes out and the strong rate dependence is restored again. Both periodically and randomly corrugated rigid surfaces reduce the slip length and its shear rate dependence.  相似文献   

2.
Using non-equilibrium molecular dynamics simulations, we investigate the effect of wall roughness on the transport resistance of water molecules inside modified carbon nanotubes. The effective shear stress, which characterizes the strong interaction between liquid molecules and solid wall, is a quantity that dominates the nanofluidic transport resistance. Both the effective shear stress and nominal viscosity arise with the increase of the amplitude or the decrease of the wavelength of roughness. The effect of roughness is also relatively more prominent in smaller nanotubes. The molecular mechanism is elucidated through the study of the radial density profile, hydrogen bonding, and velocity field of the confined water molecules.  相似文献   

3.
A systematic study into the effect of solid roughness on the slip boundary condition during shear flow is presented. Atomic roughness is modeled by varying the size and spacing between solid atoms at constant packing fraction while the interaction parameters and the thermodynamic state of the fluid are kept constant. It is shown that the fluid structure as manifest in the amplitude of the density oscillations increases with increasing smoothness of the surfaces. The fluid-solid slip length is shown to exhibit nonmonotonic behavior as the solid structure is varied from smooth to rough. Slip occurs for both smooth and rough surfaces, and stick occurs only for surfaces commensurate with the fluid.  相似文献   

4.
Using event-driven molecular dynamics simulations, we quantify how the self diffusivity of confined hard-sphere fluids depends on the nature of the confining boundaries. We explore systems with featureless confining boundaries that treat particle-boundary collisions in different ways and also various types of physically (i.e., geometrically) rough boundaries. We show that, for moderately dense fluids, the ratio of the self diffusivity of a rough wall system to that of an appropriate smooth-wall reference system is a linear function of the reciprocal wall separation, with the slope depending on the nature of the roughness. We also discuss some simple practical ways to use this information to predict confined hard-sphere fluid behavior in different rough-wall systems.  相似文献   

5.
The effect of stick and wall slip boundary conditions on the specific features of the shear flow of viscous polymers in a confined two-dimensional channel with a wavy bottom is studied. The distribution of flow-rate disturbances across the transverse cross section of the channel is calculated by the numerical simulation of the Navier-Stokes equation for an incompressible fluid at arbitrary amplitudes and an arbitrary wave number of the wall. The wall slip is modeled by the introduction of a thin layer of a low-viscosity fluid at the bottom face. Slippage leads to a marked enhancement of flow rate disturbances including inertial advection. The results agree with the known analytical solutions for the low-amplitude wall wave.  相似文献   

6.
A systematic study is presented in order to reveal the occurrence of wall slip of pre-prepared elastomeric samples characterized with the use of rotational rheometry. To exclude effects that could be attributed to additional functional fillers, both an unfilled (primarily used) and lightly silica reinforced (complementary system) silicone rubber are evaluated. Cylindrical samples are prepared by casting using a standardized methodology and examined by means of a stress-controlled parallel-plate rotational rheometer. As a control test, samples are also cured within the rheometer (in situ), thereby fixing them to the measuring plates and firmly establishing their response in “no-slip” conditions. The experiments suggest that wall slip, postulated to be caused by an adhesive failure at the sample-plate interface, may occur if the deformation is sufficiently large and no cohesive failure is present. It is detected by an increase in the loss modulus that is related to the adhesive failure associated with local dynamic friction, resulting in increased dissipated energy. Direct (via raw waveform data and normalized Lissajous figures) and indirect (via fast-Fourier-transformation) analysis of the overall system response for a single steady state deformation cycle provided further insights into the mechanism of wall slip.  相似文献   

7.
Spreading of different types of fluid on solids under an impressed force is an interesting problem. Here we study spreading of four fluids, having different hydrophilicity and viscosity on two substrates - glass and perspex, under an external force. The area of contact of fluid and solid is video-photographed and its increase with time is measured. The results for different external forces can be scaled onto a common curve. We try to explain the nature of this curve on the basis of existing theoretical treatment where either the no-slip condition is used or slip between fluid and substrate is introduced. We find that of the eight cases under study, in five cases quantitative agreement is obtained using a positive slip coefficient. The remaining three can be explained with a negative slip coefficient, equivalent to a sticking effect.  相似文献   

8.
Journal of Thermal Analysis and Calorimetry - It is the first time that partial slip and jump in wall temperature during transfer of thermal energy in hybrid nanofluid are considered...  相似文献   

9.
This study explores the effects of interaction softness on the transport properties of simple fluids. The transport coefficients of soft-sphere fluids in which the particles interact via the potential, phi(r)=epsilon(rsigma)(-n), with n in the range from 6 to 1152, have been calculated by molecular-dynamics computer simulation. The self-diffusion coefficient D shear viscosity eta(s), bulk viscosity eta(b), and thermal conductivity lambda were computed over a wide packing fraction range. It was found that the Batschinski-Hildebrand expressions, in which D, eta(s) (-1), eta(b) (-1), and lambda(-1) are assumed to have a linear dependence on the molar volume, represent the data quite well for all n, although least well for the thermal conductivity. The density for which, on extrapolation, each of these quantities is zero, increases with the softness of the interaction (or approximately n(-1)), suggesting that the effective hard-sphere diameter decreases with increasing softness in the small n limit. This treatment leads to simple empirical formulas for the effect of density and n on the effective hard-sphere diameter and packing fraction (in an intermediate range) and the four transport coefficients of these fluids.  相似文献   

10.
A theory on the time development of the density and current fields of simple fluids under an external field is formulated through the generalized Langevin formalism. The theory is applied to the linear solvation dynamics of a fixed solute regarding the solute as the external field on the solvent. The solute-solvent-solvent three-body correlation function is taken into account through the hypernetted-chain integral equation theory, and the time correlation function of the random force is approximated by that in the absence of the solute. The theoretical results are compared with those of molecular-dynamics (MD) simulation and the surrogate theory. As for the transient response of the density field, our theory is shown to be free from the artifact of the surrogate theory that the solvent can penetrate into the repulsive core of the solute during the relaxation. We have also found a large quantitative improvement of the solvation correlation function compared with the surrogate theory. In particular, the short-time part of the solvation correlation function is in almost perfect agreement with that from the MD simulation, reflecting that the short-time expansion of the theoretical solvation correlation function is exact up to t(2) with the exact three-body correlation function. A quantitative improvement is found in the long-time region, too. Our theory is also applied to the force-force time correlation function of a fixed solute, and similar improvement is obtained, which suggests that our present theory can be a basis to improve the mode-coupling theory on the solute diffusion.  相似文献   

11.
It is shown that the networks of hydrogen bonds and their associated dynamics give water special non-Gaussian properties, distinct from those of simple fluids. This means that the macroscopic properties of water cannot be fully accounted for in terms of linear physics. It is shown that there is an intimate relation between the non-Gaussian statistics and the cooperative processes recently assessed with computer simulation by Bertolini, Tani and Vallauri. It is also shown that in the special case of Gaussian statistics, the linear response theory (LRT) would lead to exact predictions. In water, on the contrary, the LRT can be violated as a consequence of the non-Gaussian character of the system statistics, which, in turn, is dictated by the crucial role played by hydrogen-bond networks. It is argued that spectacular deviations from the predictions of the LRT should be expected to take place on those transport processes, such as electrical conduction, which are essentially cooperative in nature, thereby supporting with different arguments the finding of Nylund and Tsironis. These authors accounted for the non-monotonic dependence of conductivity on temperature with a solitonic model, relying indeed on the crucial role played by hydrogen bonds. In the light of the theory illustrated in the present paper, the very important discovery of Nylund and Tsironis seems to imply that the non-Gaussian properties of water are nothing but the signature of coherent transport processing taking place in the hydrogen-bond network.  相似文献   

12.
We present a new method for the prediction of the equilibrium properties of dense gases containing hydrogen isotopes. The proposed approach combines the Feynman-Hibbs effective potential method and a deconvolution scheme introduced by Weeks et al. The resulting equations of state and the chemical potentials as functions of pressure for each of the hydrogen isotope gases depend on a single set of Lennard-Jones parameters. In addition to its simplicity, the proposed method with optimized Lennard-Jones potential parameters accurately describes the equilibrium properties of hydrogen isotope fluids in the regime of moderate temperatures and pressures. The present approach should find applications in the nonlocal density functional theory of inhomogeneous quantum fluids and should also be of particular relevance to hydrogen (clean energy) storage and to the separation of quantum isotopes by novel nanomaterials.  相似文献   

13.
The surface oxidation of ruthenium catalysts with different roughness factor values has been analyzed. It is shown that electro formation of oxidized species on the exposed surface of ruthenium is strongly affected by the rougher characteristics of the surface. This effect has been explained through the addition and removal of protons to and from the oxidized species.
. , . .
  相似文献   

14.
A general method to calculate the excess chemical potential betamuex, that is based on the Kirkwood coupling parameter's dependence of the correlation functions, is presented. The expression for the one particle bridge function B(1)r is derived for simple fluids with spherical interactions. Only the knowledge of the bridge function B(2)r is required. The accuracy of our approach is illustrated for a dense hard sphere fluid. As far as B(2)r is considered as exact, B(1)r is found to be, at high densities, the normalized bridge function -B(2)rB(2)(r=0). This expression ensures a consistent calculation of the excess chemical potential by satisfying implicitly the Gibbs-Duhem constraint. Only the pressure-consistency condition is necessary to calculate the structural and thermodynamic properties of the fluid.  相似文献   

15.
A transient molecular dynamics (TMD) method has been developed for simulation of fluid viscosity. In this method a sinusoidal velocity profile is instantaneously overlaid onto equilibrated molecular velocities, and the subsequent decay of that velocity profile is observed. The viscosity is obtained by matching in a least-squares sense the analytical solution of the corresponding momentum transport boundary-value problem to the simulated decay of the initial velocity profile. The method was benchmarked by comparing results obtained from the TMD method for a Lennard-Jones fluid with those previously obtained using equilibrium molecular dynamics (EMD) simulations. Two different constitutive models were used in the macroscopic equations to relate the shear rate to the stress. Results using a Newtonian fluid model agree with EMD results at moderate densities but exhibit an increasingly positive error with increasing density at high densities. With the initial velocity profiles used in this study, simulated transient velocities displayed clear viscoelastic behavior at dimensionless densities above 0.7. However, the use of a linear viscoelastic model reproduces the simulated transient velocity behavior well and removes the high-density bias observed in the results obtained under the assumption of Newtonian behavior. The viscosity values obtained using the viscoelastic model are in excellent agreement with the EMD results over virtually the entire fluid domain. For simplicity, the Newtonian fluid model can be used at lower densities and the viscoelastic model at higher densities; the two models give equivalent results at intermediate densities.  相似文献   

16.
The velocity cross correlation integrals $$D_{{\text{ab}}}^{\text{J}} = (N/3)\mathop \smallint \limits_{\text{o}}^\infty< {\text{v}}_{{\text{1a}}} ({\text{t}}) \cdot {\text{v}}_{{\text{2b}}} (0) > {\text{dt,}} {\text{a}} {\text{ = }} {\text{1,2;}} {\text{b}} {\text{ = }} {\text{1,2}}$$ can be estimated from the intradiffusion coefficients D 1 ° and D 2 ° at each mole fraction x1 of component 1 on the basis of the exact relations among the Onsager phenomenological coefficients together with an assumed equation relating the joint diffusion coefficients D ab J . The results from several such equations are compared with experimental data and with similar results derived by Hertz in a different way to represent the behavior of f ab ≡D ab J x b in ideal reference systems. In some cases the agreement with experimental data for relatively ideal systems is even better than given by Hertz's results. For greater accuracy in predicting the D ab J from D a dg data one would need a prediction of the limiting value of D aa J at xa=0 for a=1,2. Presently known theory does not give a basis for estimating this limit reliably.  相似文献   

17.
This paper reports the development and testing of atomistic models of silica MCM-41 pores. Model A is a regular cylindrical pore having a constant section. Model B has a surface disorder that reproduces the morphological features of a pore obtained from an on-lattice simulation that mimics the synthesis process of MCM-41 materials. Both models are generated using a similar procedure, which consists of carving the pore out of an atomistic silica block. The differences between the two models are analyzed in terms of small angle neutron scattering spectra as well as adsorption isotherms and isosteric heat curves for Ar at 87 K and Xe at 195 K. As expected for capillary condensation in regular nanopores, the Ar and Xe adsorption/desorption cycles for model A exhibit a large hysteresis loop having a symmetrical shape, i.e., with parallel adsorption and desorption branches. The features of the adsorption isotherms for model B strongly depart from those observed for model A. Both the Ar and Xe adsorption branches for model B correspond to a quasicontinuous pore filling that involves coexistence within the pore of liquid bridges and gas nanobubbles. As in the case of model A, the Ar adsorption isotherm for model B exhibits a significant hysteresis loop; however, the shape of the loop is asymmetrical with a desorption branch much steeper than the adsorption branch. In contrast, the adsorption/desorption cycle for Xe in model B is quasicontinuous and quasireversible. Comparison with adsorption and neutron scattering experiments suggests that model B is too rough at the molecular scale but reproduces reasonably the surface disorder of real MCM-41 at larger length scales. In contrast, model A is smooth at small length scales in agreement with experiments but seems to be too ordered at larger length scales.  相似文献   

18.
The radial distribution function for a fluid whose molecules interact according to the Stockmayer potential was calculated by means of thermodynamic perturbation theory using two different approximations for the perturbation term and was compared with computer simulation results. The approximation based on the Percus-Yevick equation was found to be in much better agreement with the simulations than was the “simplified superposition approximation” to the perturbation term.  相似文献   

19.
Free energy simulation method is applied to calculate the virial coefficients of square-well (SW) fluids of variable well-width and square-well based dimer forming associating fluids. In this approach, Monte Carlo sampling is performed on a number of molecules equal to the order of integral, and configurations are weighted according to the absolute value of the integrand. An umbrella-sampling average yields the value of the cluster integral in reference to a known integral. By using this technique, we determine the virial coefficients up to B6 for SW fluid with variable potential range from λ = 1.25 to λ = 3.0 and model associating fluids with different association strengths: ?af = 0.0, 8.0, 16.0 and 22.0. These calculated values for SW fluids are in good agreement with the literature. We examine these coefficients in the context of the virial equation of state (VEOS) of SW fluids. VEOS up to B4 or up to B6 describes the PVT behavior along the saturated vapor line better than the series that includes B5. We used these coefficients to find the critical properties of SW fluids and compared with the literature values. Boyle temperature is also determined and is found to increase with the increase in the well-extent and associating strength. We also report Joule–Thomson inversion curve for Lennard–Jones fluid and SW fluids using different truncated VEOS and compared with that predicted from established EOS.  相似文献   

20.
We have analyzed the mechanism of melting of molecular layers adsorbed in porous materials with cylindrical pores and rough pore walls. The working example studied here is a monolayer of methane molecules adsorbed in MCM-41 pore of diameter 2R=4 nm. Both experimental (neutron scattering) and simulation (Monte Carlo) results demonstrate the strong influence of the wall roughness on the melting mechanism. In particular, the transformation between solidlike and liquidlike monolayer phases adsorbed on a rough surface is observed over a broad temperature range, and solidlike properties persist even above the bulk methane melting temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号