首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 6 毫秒
1.
The molecular structures and electron affinities of the C6HCl5 and C6Cl6 molecules have been determined using seven pure Density Functional Theory (DFT) or hybrid Hartree–Fock/DFT methods. The EAs of ten kinds of monochlorobenzene, dichlorobenzene, trichlorobenzene and tetrachlorobenzene are also predicted. The basis set used in this work is of double-ζ plus polarization quality with additional diffuse s- and p-type functions, denoted DZP++. These methods have been carefully calibrated (Chem. Rev. 2002, 102, 231). The geometries are fully optimized with each DFT method independently. The equilibrium configuration of hexachlorobenzene is found to be planar with D6h symmetry. The pentachlorobenzene is planar with C symmetry. Three different types of the neutral-anion energy separations reported in this work are the adiabatic Electron Affinity (EAad), the vertical Electron Affinity (EAvert), and the Vertical Detachment Energy (VDE). The most reliable adiabatic electron affinities of the chlorinated benzenes obtained at the BHLYP level of theory are −0.18 eV (C6H5Cl), 0.07 eV (1,2-C6H4Cl2), 0.07 eV (1,3-C6H4Cl2), 0.04 eV (1,4-C6H4Cl2), 0.29 eV (1,2,3-C6H3Cl3), 0.31 eV (1,2, 4-C6H3Cl3), 0.31 eV (1,3,5-C6H3Cl3), 0.51 eV (1,2,3,4-C6H2Cl4), 0.48 eV (1,2,4,5-C6H2Cl4), 0.50 eV (1,2,3,5-C6H2Cl4), 0.74 eV (C6HCl5) and 0.79 eV (C6Cl6), respectively.  相似文献   

2.
FT-IR and FT-Raman spectra of 5-methoxysalicylic acid (5MeOSA) have been experimentally reported in the region of 4000–10 cm−1 and 4000–50 cm−1, respectively. The optimized geometric parameters, conformational equilibria, normal mode frequencies and corresponding vibrational assignments of 5MeOSA (C8H8O4) are theoretically examined by means of B3LYP hybrid density functional theory (DFT) method together with 6-31++G(d,p) basis set. Furthermore, reliable vibrational assignments have made on the basis of potential energy distribution (PED) calculated and the thermodynamics functions, highest occupied and lowest unoccupied molecular orbitals (HOMO and LUMO) of 5MeOSA have been predicted. Calculations are employed for different conformations of 5MeOSA, both in gas phase and in solution. Solvent effects are investigated using chloroform and dimethylsulfoxide. All results indicate that B3LYP method is able to provide satisfactory results for predicting vibrational frequencies and the structural parameters, vibrational frequencies and assignments, IR and Raman intensities of 5MeOSA are solvent dependent.  相似文献   

3.
FT-IR and FT-Raman spectra of 1-cyclopropylpiperazine (1cppp) are experimentally examined in the range 4000-200 cm?1. The optimized geometric parameters, conformational equilibria, normal mode frequencies and corresponding vibrational assignments of 1cppp C7H14N2 are theoretically examined by means of B3LYP hybrid density functional theory (DFT) with the 6–31++G(d,p) basis set. Based on the potential energy distribution (PED) reliable vibrational assignments are made and the thermodynamics functions, highest occupied and lowest unoccupied molecular orbitals (HOMO and LUMO) of 1cppp are predicted. Calculations are performed for four different conformations in two point groups of 1cppp in the gas phase. A comparison between the experimental and theoretical results indicates that the B3LYP method is able to provide satisfactory results for the prediction of vibrational frequencies, structural parameters, and assignments. Furthermore, the C s (equatorial-equatorial) point group is found as the most stable conformer of 1cppp.  相似文献   

4.
Concerning the conventional TEM-imaging as well as the analytical procedures the capabilities are pointed out: electron diffraction, energy dispersive X-ray spectroscopy (EDXS) and electron energy loss spectroscopy (EELS). The possibilities of investigation of both nanocrystalline materials and multilayers are discussed, accompanied by examples of current investigations: At alloys, produced by intense milling, at single nanocrystals the imaging by diffraction contrast was successful, the analysis has failed because of the sample thickness. By means of energy spectroscopic imaging multilayers from Fe-SiB/NbCu and Fe/Cr as well as Al2O3/TiN have been characterized. Received: 15 July 1997 / Revised: 16 February 1998 / Accepted: 21 February 1998  相似文献   

5.
6.
Adiabatic and vertical ionization potentials (IPs) and valence electron affinities (EAs) of serinamide in the gas phase have been determined using density functional theory (DFT) B3LYP, B3P86, and B3PW91 methods with the 6‐311++G** and 6‐311G** basis sets, respectively. IPs and EAs of serinamide in solution have been calculated with the B3LYP method using the 6‐311++G** and 6‐311G** basis sets. Eight possible conformers of serinamide and its charged states in the gas phase have been optimized employing the DFT B3LYP method with 6‐311++G** and 6‐311G** basis sets, respectively. All the adiabatic and vertical ionization potentials (AIPs and VIPs) of eight serinamide conformers in our work are positive values, whether in the gas phase or in solutions; the IPs in solutions are smaller than the results in the gas phase and decrease with increased dielectric constants in solutions. This finding indicates that the cationic states in solutions are more stable than those in the gas phase. All EAs of eight serinamide conformers are negative values in the gas phase, indicating that the anionic states are unstable with respect to electron autodetachment, both adiabatically and vertically. In contrast, all other adiabatic electron affinities (AEAs) are negative values in solutions except for 6S in water; 7S in chloroform, acetone, and water; and 8S in acetone and water, and increase with increasing of dielectric constants in solutions. All vertical electron affinities (VEAs) are negative values in solutions; however, no good rule has been found for these values in solutions. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2006  相似文献   

7.
The successful controlled homopolymerization of acrylonitrile (AN) by cobalt-mediated radical polymerization (CMRP) is reported for the first time. As a rule, initiation of the polymerization was carried out starting from a conventional azo-initiator (V-70) in the presence of bis(acetylacetonato)cobalt(II) ([Co(acac)(2)]) but also by using organocobalt(III) adducts. Molar concentration ratios of the reactants, the temperature, and the solvent were tuned, and the effect of these parameters on the course of the polymerization is discussed in detail. The best level of control was observed when the AN polymerization was initiated by an organocobalt(III) adduct at 0 degrees C in dimethyl sulfoxide. Under these conditions, poly(acrylonitrile) with a predictable molar mass and molar mass distribution as low as 1.1 was prepared. A combination of kinetic data, X-ray analyses, and DFT calculations were used to rationalize the results and to draw conclusions on the key role played by the solvent molecules in the process. These important mechanistic insights also permit an explanation of the unexpected "solvent effect" that allows the preparation of well-defined poly(vinyl acetate)-b-poly(acrylonitrile) by CMRP.  相似文献   

8.
FT-IR and Raman spectra of 5-o-tolyl-2-pentene (OTP) have been experimentally reported in the region of 4000-10 cm(-1) and 4000-100 cm(-1), respectively. The optimized geometric parameters, normal mode frequencies and corresponding vibrational assignments of cis and trans isomers of OTP (C12H16) have been theoretically examined by means of B3LYP hybrid density functional theory (DFT) method together with 6-31G(d) and 6-31++G(d,p) basis sets. Furthermore, reliable vibrational assignments have made on the basis of potential energy distribution (PED) calculated. Comparison between the experimental and theoretical results indicates that density functional B3LYP method is able to provide satisfactory results for predicting vibrational wavenumbers and trans isomer is supposed to be the most stable form of OTP molecule.  相似文献   

9.
The time-dependent density functional theory approach, implemented at hybrid-B3LYP, GGA-PBE, and density functional-based tight binding levels of theory, was used to model photoinjection in organic dye/TiO2 quantum dot to explore the prospects of improvement of dye-sensitized solar cell (DSSC). The photosensitizer used in this study consisted of six carbazole-based organic dyes, a cyanoacrylic acid group as an acceptor and an oligothiophene π-bridge spacer. The modifications were made in the dyes by increasing the length of the spacer by adding thiophene and oxadiazole rings at different positions of the donor-acceptor bridge. The structural variations appeared to alter the electronic and optical properties of dyes studied via energy levels and excitation spectra. The UV-Vis spectra calculated for all the dyes in solvents exhibited a red shift in spectral peaks with an increase in the polarity of the solvents. The findings of the study pointed toward the indirect photoinjection of the dye-(TiO2)96 complex for six different dyes. The substitution of the oxadiazole ring at the center and addition of a thiophene ring at the edge of the spacer produced two dyes that exhibited the lowest injection energies of 0.11 and 0.17 eV, along with the regeneration energies of 1.18 and 1.12 eV, respectively. The dyes reported here may have promising applications in photoanode for enhancing the performance of DSSC.  相似文献   

10.
The dynamics of electron injection has been investigated in DNA hairpins possessing a stilbenediether electron donor linker by means of femtosecond transient absorption spectroscopy. Ultrafast electron injection and charge recombination are observed with neighboring cytosine or thymine bases; however, guanine-guanine base pairs are not reduced, permitting the investigation of the distance dependence of charge injection.  相似文献   

11.
Density functional theory (DFT) was applied to describe the magnetic and electron-transfer properties of dinuclear systems containing the [MnO2Mn]n+ core, with n=0,1,2,3,4. The calculation of the potential energy surfaces (PESs) of the mixed-valence species (n=1,3) allowed the classification of these systems according to the extent of valence localization as Class II compounds, in the Robin-Day classification scheme. The fundamental frequencies corresponding to the asymmetric breathing vibration were also computed.  相似文献   

12.
在分子水平研究新型人工光俘获材料对于太阳能电池的发展具有重要意义。本文采用TD-DFT方法研究了卟啉-富勒烯(P-C60)体系的光诱导电子转移过程。该过程由三个过程组成:(1)光激发过程,P-C60由基态激发至卟啉局域激发(LE)态;(2)电荷分离(CS)过程形成卟啉至富勒烯的电荷转移(CT)态;(3)电荷重组(CR)过程,CT态返回到基态。我们通过分析分子轨道指认了LE态和CT,并获得了这两个激发态的结构。采用广义Mulliken-Hush(GMH)方法计算体系电荷分离和电荷重组过程的态态间电子耦合,和实验测量的电子转移速率获得定性一致的结果。本工作为分析、预测光诱导电荷转移过程提供了有效的手段。  相似文献   

13.
The adiabatic bound state of an excess electron is calculated for a water cluster (H2O) 8 ? in the gas phase using the DFT-B3LYP method with the extended 6-311++G(3df,3pd) basis set. For the liquid phase the calculation is performed in the polarizable continuum model (PCM) with regard to the solvent effect (water, ? = 78.38) in the supermolecule-continuum approximation. The value calculated by DFT-B3LYP for the vertical binding energy (VBE) of an excess electron in the anionic cluster (VBE(H2O) 8 ? = 0.59 eV) agrees well with the experimental value of 0.44 eV obtained from photoelectron spectra in the gas phase. The VBE value of the excess electron calculated by PCM-B3LYP for the (H2O) 8 ? cluster in the liquid phase (VBE = 1.70 eV) corresponds well to the absorption band maximum λmax = 715 nm (VBE = 1.73 eV) in the optical spectrum of the hydrated electron hydr e hydr ? . Estimating the adiabatic binding energy (ABE)e hydr t- in the (H2O) 8 ? cluster (ABE = 1.63 eV), we obtain good agreement with the experimental free energy of electron hydration ΔG 298 0 (e hydr ? ) = 1.61 eV. The local model (H2O) 8 2? of the hydrated dielectron is considered in the supermolecule-continuum approximation. It is shown that the hydrated electron and dielectron have the same characteristic local structure: -O-H{↑}H-O- and -O-H{↑↓}H-O-respectively.  相似文献   

14.
《Chemical physics letters》2003,367(3-4):463-467
Supramolecular self-assembling processes of nitrogen bidendated heterocycles are fundamental for the understanding of rules which predestine to their spontaneous formation. In our approach ab initio DFT method has been used to resolve six Cu(I) complexes. The collected data show that only four structures converged into a quasi-tetrahedral [L2Cu][BF4] geometry. A special feature in case of the [(bpy–bpz)2Cu][BF4] hetero-complex, not observed in case of the corresponding Cu(I) homo-complexes, is the increased participation of p orbitals of the Cu+ to the HOMO.  相似文献   

15.
Tin-molybdenum oxides, formed by the calcination of precipitates in air, have been examined by high-resolution electron microscopy. Low-temperature calcination gives rise to the formation of small tin(IV) oxide-type crystals amidst an amorphous material whereas higher-temperature treatment results in the development of a highly crystalline rutile-related phase composed of larger particles. High concentrations of molybdenum in the initial precipitates inhibits the thermally induced crystal growth. The common occurrence of superficial disorder in the larger particles is associated with surface damage resulting from the volatilization of excess molybdenum as molybdenum(VI) oxide. Planar faults were frequently observed within the particles and, in some cases, these defects were identified as twin boundaries enriched with molybdenum. The formation of these planar faults is discussed in terms of the preparative procedure.  相似文献   

16.
Although previously studied [(HOOC)4(TBPor)Ru(NCS)2]2– ( A ; TBPor = tetrabenzoporphrin) avoided the intrinsic π‐stacking aggregation of planar metallophorphryins via incorporating two axial ligands, these isothiocyanato groups are believed to be the weakest part of the sensitizer while operating in dye‐sensitized solar cells (DSSCs). In this work, a series of thiocyanate‐free ruthenium porphyrin complexes featuring with phenyl/substituted‐phenyl axial groups, [(HOOC)4(TBPor)Ru(L′)2]2– (L′ = Ph ( 1 ), PhF2 ( 2 ), PhCl2 ( 3 ), PhBr2 ( 4 ), and PhI2 ( 5 )), have been examined using density functional theory (DFT) and time‐dependent DFT (TD‐DFT). Both analyses of electronic structures and calculations of interaction energies demonstrate that the Ru‐L′ interaction in 1 – 5 is significantly enhanced relative to the Ru‐NCS in A , which will raise chemical stability of the former in DSSCs. Single‐electron oxidation mechanism has been proposed. Oxidation potentials (E0) are increased by 0.2–0.6 V when changing axial groups from NCS to Ph/PhX2. The spin‐orbit coupling (SOC) relativistic effects can be negligible in computing E0 values. TD‐DFT calculations show that 1 – 5 have more intense Q band in the visible region than A does. Taken together, high chemical stability, suitable oxidation potential and expanding absorption spectra would allow for potential applications of the thiocyanate‐free sensitizers in DSSCs. © 2016 Wiley Periodicals, Inc.  相似文献   

17.
The density functional theory (DFT) methods were used for theoretical studies of three compounds. The guanidine molecule is a main structural unit in these complexes, while the studied acids have similar chemical character. The family of simple guanidinium compounds is intensively investigated as potential materials with ferroic phase transitions. Among studied "guanidinium" complexes, those with crystal structure without macroscopic center of inversion, exhibit NLO properties. For three compounds: CN(3)H(5)CH(3)COOH, CN(3)H(5)CCl(3)COOH and CN(3)H(5)CF(3)COOH the detailed theoretical calculations were performed. For each complex the equilibrium geometry was obtained. The calculated geometrical parameters (bond lengths and angles) of all investigated complexes are compared. The theoretical vibrational frequencies and potential energy distribution (PED) of three "guanidinium" compounds were calculated by B3LYP method. On the basis of PED calculations the detailed assignments of bands for new chemical complexes are presented. The real crystals were obtained in the case of CN(3)H(5)CH(3)COOH compound, only. The theoretical results can be used in future, when the synthesis of trichloroacetic and trifluoroacetic analogues of CN(3)H(5)CH(3)COOH will be done.  相似文献   

18.
The results of two independent electron diffraction analyses of PbCl2 are compared. The bond lengths (rg) and angles (rα) were found to be 2.447 ± 0.005 Å and 98.7 ± 1.0° (nozzle temperature 853 K, Budapest), and 2.444 ± 0.005 Å and 98.0 ± 1.4° (nozzle temperature 963 K, Moscow), respectively.  相似文献   

19.
The low lying electronic states of the molecule MoN were investigated by performing all electron ab initio multi-configuration self-consistent-field (CASSCF) calculations. The relativistic corrections for the one electron Darwin contact term and the relativistic mass-velocity correction were determined in perturbation calculations. The electronic ground state is confirmed as being 4. The chemical bond of MoN has a triple bond character because of the approximately fully occupied delocalized bonding π and σ orbitals. The spectroscopic constants for the ground state and ten excited states were derived. The excited doublet states 2, 2Γ, 2Δ, and 2+ are found to be lower lying than the 4Π state that was investigated experimentally. Elaborate multi-configuration configuration-interaction (MRCI) calculations were carried out for the states 4 and 4∏ using various basis sets. The spectroscopic constants for the 4 ground state were determined as re=1.636 Å and ωe=1109 cm−1, and for the 4∏ state as re=1.662 Å and ωe=941 cm−1. The values for the ground state are in excellent agreement with available experimental data. The MoN molecule is polar with a charge transfer from Mo to N. The dipole moment was determined as 2.11 D in the 4 state and as 4.60 D in the 4∏ state. These values agree well with the revised experimental values determined from molecular Stark spectroscopic measurements. The dissociation energy, De, is determined as 5.17 eV, and D0 as 5.10 eV.  相似文献   

20.
Ni-P非晶态合金中电子转移问题的DFT研究   总被引:3,自引:1,他引:3  
方志刚  沈百荣  范康年  邓景发 《化学学报》1999,57(11):1246-1251
根据Ni-P非晶态合金结构的短程有序、Ni和P之间具较强化学作用和结构中不存在P-P直接相连的实验事实,选择了Ni~nP(n=1-6)原子簇模型,用密度泛函理论方法对其进行计算。结果表明,在模型体系中,随着P含量的减少,电子转移方向发生变化,P原子由得电子变为失电子。这与Ni-P非晶态合金的实验结果一致,说明Ni~nP(n=1-6)原子簇模型能反映Ni-P非晶态合金的结构特点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号