首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An analysis is made of the boundary layer flow of Reiner-Philippoff fluids. This work is an extension of a previous analysis by Hansen and Na [A.G. Hansen and T.Y. Na, Similarity solutions of laminar, incompressible boundary layer equations of non-Newtonian fluids. ASME 67-WA/FE-2, presented at the ASME Winter Annual Meeting, November (1967)], where the existence of similar solutions of the boundary layer equations of a class of general non-Newtonian fluids were investigated. It was found that similarity solutions exist only for the case of flow over a 90° wedge and, being similar, the solution of the non-linear boundary layer equations can be reduced to the solution of non-linear ordinary differential equations. In this paper, the more general case of the boundary layer flow of Reiner-Philippoff fluids over other body shapes will be considered. A general formulation is given which makes it possible to solve the boundary layer equations for any body shape by a finite-difference technique. As an example, the classical solution of the boundary layer flow over a flat plate, known as the Blasius solution, will be considered. Numerical results are generated for a series of values of the parameters in the Reiner-Philippoff model.  相似文献   

2.
An analysis of possibility of finding similaarity solutions to the three-dimensional, steady, incompressible, boundary layer equations in rectangular co-ordinates for a power law fluid has been discussed in the literature. In the present paper a similarity analysis is made of the steady, three-dimensional, incompressible, Iaminar, boundary layer flow of all time independent non-Newtonian fluids. The important conclusion drawn from this analysis in that for a non-Newtonian fiuid of any model, a similarity solution exists for the fluid for which shearing stress and rate of strain can be related by an arbitrary continuous function.  相似文献   

3.
A theoretical analysis is presented which brings steady laminar film flow of power-law fluids within the framework of classical boundary layer theory. The upper part of the film, which consists of a developing viscous boundary layer and an external inviscid freestream, is treated separately from the viscous dominated part of the flow, thereby taking advantage of the distinguishing features of each flow region. It is demonstrated that the film boundary layer developing along a vertical wall can be described by a generalized Falkner-Skan type equation originally developed for wedge flow. An exact similarity solution for the velocity field in the film boundary layer is thus made available.Downstream of the boundary layer flow regime the fluid flow is completely dominated by the action of viscous shear, and fairly accurate solutions are obtained by the Von Karman integral method approach. A new form of the velocity profile is assumed, which reduces to the exact analytic solution for the fully-developed film. By matching the downstream integral method solution to the upstream generalized Falkner-Skan similarity solution, accurate estimates for the hydrodynamic entrance length are obtained. It is also shown that the flow development in the upstream region predicted by the approximate integral method closely corresponds to the exact similarity solution for that flow regime. An analytical solution of the resulting integral equation for the Newtonian case is compared with previously published results.  相似文献   

4.
This paper presents a mathematical model for describing approximately the viscoelastic effects in non-Newtonian steady flows through a porous medium. The rheological behaviour of power law fluids is considered in the Maxwell model of elastic behaviour of the fluids. The equations governing the steady flow through porous media are derived and an analytical solution of these equations in the case of a simple flow system is obtained. The conditions for which the viscoelastic effects may become observable from the pressure distribution measurements are shown and expressed in terms of some dimensionless groups. These have been found to be relevant in the evaluation of viscoelastic effects in the steady flow through porous media.  相似文献   

5.
This note is concerned with a laminar pipe flow of a non-Newtonian fluid under the action of a small pulsating pressure gradient superposed to a steady one. The constitutive law describing the rheological behaviour of the fluid is the so-called power law (Ostwald–de Waele). An approximated analytical solution is found for the velocity, as power series of the amplitude of the periodic disturbance. The analytic solution is compared with a direct numerical solution and the perfect accord of the values obtained is underscored.  相似文献   

6.
The problem of the boundary layer flow of power law non-Newtonian fluids with a novel boundary condition is studied.The existence and uniqueness of the solutions are examined,which are found to depend on the curvature of the solutions for different values of the power law index n.It is established with the aid of the Picard-Lindel¨of theorem that the nonlinear boundary value problem has a unique solution in the global domain for all values of the power law index n but with certain conditions on the curvature of the solutions.This is done after a suitable transformation of the dependent and independent variables.For 0 n 1,the solution has a positive curvature,while for n 1,the solution has a negative or zero curvature on some part of the global domain.Some solutions are presented graphically to illustrate the results and the behaviors of the solutions.  相似文献   

7.
The stability of the stationary (steady-state) laminar boundary layer of a non-Newtonian liquid obeying a power-type rheological law at a semiinfinite plate situated in a longitudinal flow is analyzed. An approximate formula is derived for estimating the minimum Reynolds number at which the flow loses stability with respect to slight two-dimensional perturbations. Calculations of the point of stability loss for aqueous solutions of carboxyl methyl cellulose are presented.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 121–124, March–April, 1971.  相似文献   

8.
Summary To understand theoretically the flow properties of physiological fluids, we have considered as a model the peristaltic motion of a power law fluid in a tube, with a sinusoidal wave of small amplitude travelling down its wall. The solution for the stream function is obtained as a power series in terms of the amplitude of the wave. The stream function and the velocity components are evaluated by solving numerically two point boundary value problems with a singular point at the origin. The influence of the applied pressure gradient along with non-Newtonian parameters on the streamlines and velocity profiles are discussed in detail.  相似文献   

9.
This paper deals with the illustration of rheological effects of non-Newtonian displacing and displaced fluids on the dynamics of a moving interface in a porous medium. Both fluids are considered to be compressible. Specifically, the rheological effects are shown and discussed on the interface position and on its velocity in terms of rheological parameters of power-law fluids. The approximate analytical solutions are obtained for the boundary and initial conditions of practical interest, from which an optimal policy of injection can be found to control the dynamics of a moving interface in oil displacement mechanism.  相似文献   

10.
Analytical and numerical study is conducted for two-dimensional steady-state buoyancy driven flow of a non-Newtonian power law fluid confined in a shallow rectangular horizontal cavity uniformly heated from below, while its short vertical rigid sides are considered adiabatic. The effect of the non-Newtonian behaviour on the onset of convection, fluid flow, temperature field, and heat transfer is examined. A closed approximate analytical solution is developed on the basis of the parallel flow assumption and the obtained results are validated numerically by solving the full governing equations.  相似文献   

11.
The problem of pulsating flow superimposed on the steady laminar flow in a circular tube is investigated for the fluid characterized by the Oldroyd's constitutive equations. The governing equations are solved in an exact manner and the solution is obtained in terms of two non-dimensional fluid parameters. Several interesting illustrations are provided comparing the behaviour of Newtonian fluid and Oldroyd fluids regarding the velocity field, sectional mean velocity, surface friction and balance of force. The flow for small and large frequencies of vibration are obtained as special cases. For Oldroyd fluids also the flow is basically parabolic for small frequencies while it possesses a boundary layer character at large frequencies. The solution for second order fluids and Maxwell fluids can be obtained by appropriately choosing the two fluid parameters.  相似文献   

12.
暖季强降雨对多年冻土南界斜坡路基稳定性影响分析   总被引:2,自引:0,他引:2  
蔡书鹏  杨林  唐川林 《力学学报》2008,40(2):250-254
为阐明表面活性剂水溶液的减阻作用,使用LDV对零压梯度的二维湍流平板边界层中的CTAB 表面活性剂水溶液的湍流特性进行了实验研究. 结果表明:与牛顿流体相比,CTAB水溶液边 界层的粘性底层增厚;主流时均速度分布有被层流化的趋势,对数分布域上移;主流方向速 度湍动强度峰值减小,且远离壁面,在靠近边界层中部,出现第2峰值;垂直于主流方向的 速度湍动强度受到了大幅度抑制,雷诺应力沿着边界层厚度方向几乎为零. 结果说明CTAB 水溶液具有减弱湍流湍动各个成分相关度的作用,从而能够使雷诺应力降低、湍流能量生成 项减小最终降低流体的输送动力.  相似文献   

13.
In this paper, we study the approximate solution of the self-simikar problem for radial flow of non-Newtonian fluids through porous media. Assuming that the fluids obey the exponential function law, we obtain an exact solution for the exponent n=0 and compare it with the approximate solution in ref. [1]. For n>1 and n<1, we obtain respectively approximate solutions. Some exampls are presented.  相似文献   

14.
A similarity analysis of three-dimensional boundary layer equations of a class of non-Newtonian fluid in which the stress, an arbitrary function of rates of strain, is studied. It is shown that under any group of transformation, for an arbitrary stress function, not all non-Newtonian fluids possess a similarity solution for the flow past a wedge inclined at arbitrary angle except Ostwald-de-Waele power-law fluid. Further it is observed, for non-Newtonian fluids of any model only 90° of wedge flow leads to similarity solutions. Our results contain a correction to some flaws in Pakdemirli׳s [14] (1994) paper on similarity analysis of boundary layer equations of a class of non-Newtonian fluids.  相似文献   

15.
This paper presents an analytical Buckley-Leverett-type solution for one-dimensibnal immiscible displacement of a Newtonian fluid by a non-Newtonian fluid in porous media. The non-Newtonian fluid viscosity is assumed to be a function of the flow potential gradient and the non-Newtonian phase saturation. To apply this method to field problems a practical procedure has been developed which is based on the analytical solution and is similar to the graphic technique of Welge. Our solution can be regarded as an extension of the Buckley-Leverett method to Non-Newtonian fluids. The analytical result reveals how the saturation profile and the displacement efficiency are controlled not only by the relative permeabilities, as in the Buckley-Leverett solution, but also by the inherent complexities of the non-Newtonian fluid. Two examples of the application of the solution are given. One application is the verification of a numerical model, which has been developed for simulation of flow of immiscible non-Newtonian and Newtonian fluids in porous media. Excellent agreement between the numerical and analytical results has been obtained using a power-law non-Newtonian fluid. Another application is to examine the effects of non-Newtonian behavior on immiscible displacement of a Newtonian fluid by a power-law non-Newtonian fluid.  相似文献   

16.
The transient spherical flow behavior of a slightly compressible non-Newtonian, power-law fluids in porous media is studied. A nonlinear partial differential equation of parabolic type is derived. The diffusivity equation for spherical flow is a special case of the new equation. We obtain analytical, asymptotic and approximate solutions by using the methods of Laplace transform and weighted mass conservation. The structures of asymptotic and approximate solutions are similar, which enriches the theory of one-dimensional flow of non-Newtonian fluids through porous media.  相似文献   

17.
In this paper, we investigate the theoretical analysis for the unsteady magnetohydrodynamic laminar boundary layer flow due to impulsively stretching sheet. The third-order highly nonlinear partial differential equation modeling the unsteady boundary layer flow brought on by an impulsively stretching flat sheet was solved by applying Adomian decomposition method and Pade approximants. The exact analytical solution so obtained is in terms of rapidly converging power series and each of the variants are easily computable. Variations in parameters such as mass transfer (suction/injection) and Chandrasekhar number on the velocity are observed by plotting the graphs. This particular problem is technically sound and has got applications in expulsion process and related process in fluid dynamics problems.  相似文献   

18.
The lattice Boltzmann method is developed to simulate the pressure-driven flow and electroosmotic flow of non-Newtonian fluids in porous media based on the representative elementary volume scale. The flow through porous media was simulated by including the porosity into the equilibrium distribution function and adding a non-Newtonian force term to the evolution equation. The non-Newtonian behavior is considered based on the Herschel–Bulkley model. The velocity results for pressure-driven non-Newtonian flow agree well with the analytical solutions. For the electroosmotic flow, the influences of porosity, solid particle diameter, power law exponent, yield stress and electric parameters are investigated. The results demonstrate that the present lattice Boltzmann model is capable of modeling non-Newtonian flow through porous media.  相似文献   

19.
In this paper, we obtain a third-order approximate solution for the laminar boundary layer between two planes perpendicular to each other.In boundary layer equations, the viscous and the inertial terms have the same quantity step. In this paper, at first, supposing that the inertial terms are bigger than the viscous terms, we solve the boundary layer equations, and then we suppose that the viscous terms are bigger than the inertial terms. At last, we take the mean value as the valid solution of the boundary layer equations.The first- and the second-order approximate solutions obtained in this paper coincide with the results in ref. [1], while the third-order solution obtained in this paper is better than that in ref. [1].  相似文献   

20.
Summary A boundary integral equation method is proposed for approximate numerical and exact analytical solutions to fully developed incompressible laminar flow in straight ducts of multiply or simply connected cross-section. It is based on a direct reduction of the problem to the solution of a singular integral equation for the vorticity field in the cross section of the duct. For the numerical solution of the singular integral equation, a simple discretization of it along the cross-section boundary is used. It leads to satisfactory rapid convergency and to accurate results. The concept of hydrodynamic moment of inertia is introduced in order to easily calculate the flow rate, the main velocity, and the fRe-factor. As an example, the exact analytical and, comparatively, the approximate numerical solution of the problem of a circular pipe with two circular rods are presented. In the literature, this is the first non-trivial exact analytical solution of the problem for triply connected cross section domains. The solution to the Saint-Venant torsion problem, as a special case of the laminar duct-flow problem, is herein entirely incorporated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号