首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The complexes of chromium(III) ion formed by salicylic acid, SA(H(2)L), and its derivatives (H(2)L): 5-nitrosalicylic acid (5-NSA), 5-sulphosalicylic acid (5-SSA) were investigated by means of potentiometry and spectroscopy, at 25 degrees C and in ionic strength of 0.1 M KNO(3) and 0.1 M KCl, respectively. Over the acidic pH range, the coordination of Cr(III) ion to SA and its derivatives in 1 : 1 mole ratio occurs, CrL(+) type complex is formed. In the excess of ligand, the coordination of the second ligand molecule is somewhat hindered; as a result CrL(HL) type complex occurs. Their existences were verified and their formation constants were determined. At near neutral pH, CrL(OH) and CrL(HL)(OH)(-) type hydroxo complexes formed by hydrolytic equilibria and their formation constants were also defined. The stabilities of Cr(III) complexes of SA and its derivatives decrease in the following order: SA>5-SSA>5-NSA. The formation constants of Cr(III) complexes of SA and its derivatives are in comparable ranges with the corresponding complexes of the 2,x-dihydroxybenzoic acid (2,x-DHBA) of Cr(III) ion. The stabilities of SA complexes for V(IV), Cr(III) and Fe(III) ions that have similar ionic radii, increase in the order VOL相似文献   

2.
Budesínský B 《Talanta》1969,16(9):1277-1288
Both potentiometric and spectrophotometric methods have been used for the determination of the stability constants of hydrogen complexes of 4,5-dihydroxynaphthalene-2,7-disulphonic acid (Chromotropic Acid, CA), 3,6-bis(phenylazo)-4,5-dihydroxynaphthalene-2, 7-disulphonic acid (Azo III, A III), 3,6-bis(2'-sulphophenylazo)-4, 5-dihydroxynaphthalene-2,7-disulphonic acid (Sulphonazo III, SA III), 3,6-bis(4'-methyl-2'-sulphophenylazo)-4,5-dihydroxynaphthalene 2,7-disulphonic acid (Dimethylsulphonazo III, DMSA III), 3-(4'-chloro - 2' - phosphonophenylazo) -4,5- dihydroxynaphthalene -2,7-disulphonic acid (Chlorophosphonazo I, CPA I), 3,6-bis(4'-chloro-2'-phosphonophenylazo)-4,5-dihydroxynaphthalene-2,7-disulphonic acid (Chlorophosphonazo III, CPA III), 3-(2'-arsonophenylazo)-4, 5-dihydroxynaphthalene-2,7-disulphonic acid (Arsenazo I, AA I) and 3,6-bis(2'-arsonophenylazo)-4,5-dihydroxynaphthalene-2,7-disulphonic acid (Arsenazo III, AA III).  相似文献   

3.
This paper is concerned with the structural data obtained for two amorphous binuclear complexes of iron(III) and aluminum(III) with chromium(III)-diethylentriaminepentaacetic acid (chromium(III)-DTPA, CrL(2)(-)) using the energy-dispersive X-ray diffraction technique. Fe(OH)CrL(H(2)O)(6) and Al(OH)CrL(H(2)O)(6) are binuclear complexes, the metals ions being bridged via oxygen atoms. The metal ions are all octahedrally coordinated.  相似文献   

4.
A novel bis(oxalato)chromium(III) salt of a ferromagnetically coupled, oxalato-bridged dinuclear chromium(III)-cobalt(II) complex of formula [CrL(ox)(2)CoL'(H(2)O)(2)][CrL(ox)(2)]·4H(2)O (1) has been self-assembled in solution using different aromatic α,α'-diimines as blocking ligands, such as 2,2'-bipyridine (L = bpy) and 2,9-dimethyl-1,10-phenanthroline (L' = Me(2)phen). Thermal dehydration of 1 leads to an intriguing solid-state reaction between the S = 3/2 Cr(III) anions and the S = 3 Cr(III)Co(II) cations to give a ferromagnetically coupled, oxalato-bridged trinuclear chromium(III)-cobalt(II) complex of formula {[CrL(ox)(2)](2)CoL'} (2). Complex 2 possesses a moderately anisotropic S = 9/2 Cr(III)(2)Co(II) ground state, and it exhibits slow magnetic relaxation behavior at very low temperatures (T(B) < 2.0 K).  相似文献   

5.
The complex formation constants of two phosphonic acids, HEDP and ATMP, with three trivalent metallic cations, Al(III), Cr(III) and Fe(III), have been determined by acid-base titration at 25 degrees C and constant ionic strength (0.1 mol l(-1), KNO(3)), using Martell and Motekaitis' computer programs. Species distribution curves showed that all three cations are in complex form in the pH range of fresh waters (5-9). The study of different cation/ligand ratios proved that both ligands mainly form anionic soluble complexes for systems having an excess of ligand-as protonated and unprotonated forms and especially ternary complexes with HEDP. For higher metal concentrations (excess of cation), weakly soluble species of HEDP and ATMP were formed with Al(III) and Cr(III). Two insoluble complexes with ATMP have been identified by SEM/EDAX as AlH(3)X((s)) and Cr(2)X((s)). Regarding Fe(III) species, Fe(OH)(3(s)) precipitate seems to predominate in solution.  相似文献   

6.
The equilibrium reactions of yttrium(III) ion with dihydroxybenzoic acids (2,3-dihydroxybenzoic acid (2,3-DHBA) and 3,4-dihydroxybenzoic acid (3,4-DHBA)) (H(3)L) were investigated in aqueous solution by means of potentiometric and spectroscopic methods, in 0.1 mol.l(-1) ionic strength medium at 25 degrees C. The stability constants are reported for YL, YL(HL)(2-) and YL(2)(3-)- type mononuclear complexes. 2,3-DHBA can bind Y(III) ion strongly and the salicylate mode is effective over the acidic pH range. But in higher pH range, 2,3-DHBA and 3,4-DHBA act more efficiently through catecholate groups. The complexes of 2,3-DHBA are more stable than the complexes of 3,4-DHBA.  相似文献   

7.
Base hydrolysis of [Cr(ox)2(quin)]3− (where quin2− is N,O-bonded 2,3-pyridinedicarboxylic acid dianion) causes successive ligand dissociation and leads to a formation of a mixture of oligomeric chromium(III) species, known as chromates(III). The reaction proceeds through [Cr(ox)(quin)(OH)2]3− and [Cr(quin)(OH)4]3− formation. Dissociation of oxalato ligands is preceded by the opening of the Cr-quin chelate-ring at the Cr–N bond. The kinetics of the chelate-ring opening and the first oxalate dissociation were studied spectrophotometrically, within the lower energy d–d band region at 0.4–1.0 M NaOH. The pseudo-first-order rate constants (k obs0 and k obs1) were calculated using SPECFIT software for an A → B → C reaction pattern. Additionally, kinetics of base hydrolysis of [Cr(ox)(quin)(OH)2]3− and cis-[Cr(ox)2(OH)2]3− were studied. The determined pseudo-first-order rate constants were independent of [OH]. A mechanism is postulated that the reactive intermediate with the one-end bonded quin ligand, [Cr(ox)2(O-quin)(OH)]4−, formed in the first reaction stage, subsequently undergoes oxalates substitution. Kinetic parameters for the chelate-ring opening and the first oxalate dissociation were determined.  相似文献   

8.
The chromophore, 3-(5-chlor-2-hydroxy-3-sulfophenylazo)-6-(2,4,6-tribromophenylazo)-4,5-dihydroxynaphthalene-2,7-disulfonic acid (CSTDD) was used to complex Cu(II) and Co(II) in aqueous solution at pH 9.43. A binuclear complex of Cu-CSTDD-Co was formed and showed a high selectivity for the determination of Co(II). The spectral correction technique was applied to characterize the complexes. The results showed the formation of complexes of Cu(CSTDD), Co(CSTDD)3 and Cu2(CSTDD)2Co. The quantitative analysis of Co(II) at ng/ml level was carried out by the light-absorption ratio variation approach (LARVA). The results showed that the technique is satisfactory to determine Co(II) at trace level in water samples with a detection limit of 2.3 ng/ml.  相似文献   

9.
Two new series of each of four Cr(III) and Ni(II) imino nitroxide complexes with various kinds of beta-diketonates, [Cr(beta-diketonato)(2)(IM2py)]PF(6), and [Ni(beta-diketonato)(2)(IM2py)] (IM2py = 2-(2'-(pyridyl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazol-1-oxy)) have been synthesized, and their structures and magnetic and optical properties have been examined. The X-ray analysis demonstrated that a IM2py ligand coordinated to Cr(III) and Ni(II) acts as a five-membered bidentate chelate. The variable-temperature magnetic susceptibility measurements indicated the antiferromagnetic and ferromagnetic interaction of Cr(III) and Ni(II) with IM2py, respectively, giving a variety of the magnetic coupling constant J values with varying the beta-diketonato ligands. The UV-vis shoulders around (19-20) x 10(3) and (17-18) x 10(3) cm(-)(1) for the Cr(III) and Ni(II) complexes, respectively, characteristic of the IM2py complexes were assigned to the metal-ligand charge-transfer transitions, Cr(t(2g))-SOMO(pi*) and Ni(e(g))-SOMO(pi*) MLCT in terms of the resonance Raman spectra and the variable-temperature absorption spectra. The absorption components centered around (13-14) x 10(3) cm(-1) for the Cr(III) and Ni(II) complexes were due to the formally spin-forbidden d-d transition within the t(2g) and e(g) subshells, associated with the intensity enhancement. The spectroscopic behavior with varying the beta-diketonato ligands is discussed in connection with the antiferromagnetic or ferromagnetic coupling constant J values on the basis of the exchange mechanism along with the coligand effect.  相似文献   

10.
The complexes of chromium(III), scandium(III) and yttrium(III) formed by 1-hydroxy-2-naphthoic acid (1,2-HNA: H2L) and 3-hydroxy-2-naphthoic acid (3,2-HNA: H2L) were investigated by potentiometry and spectroscopy at 25+/-0.1 degrees C and at an ionic strength of 0.1 M KNO3 in 50% ethanol-water (v/v) medium. The stoichiometries of these three M(III) complexes formed with these hydroxy-naphthoic acids and with hydroxo ion were defined and their formation constants were determined and compared. Thus, the removing capacities of these ligands could be examined by calculating the equilibrium concentration of Cr(III) that exists in the discharge water of various industries since Cr(III) ions are the main pollutants present during waste water treatment in our city, Bursa.  相似文献   

11.
W Cao  H Wang  X Wang  HK Lee  DK Ng  J Jiang 《Inorganic chemistry》2012,51(17):9265-9272
Reaction of the half-sandwich complexes M(III)(Pc)(acac) (M = La, Eu, Y, Lu; Pc = phthalocyaninate; acac = acetylacetonate) with the metal-free N-confused 5,10,15,20-tetrakis[(4-tert-butyl)phenyl]porphyrin (H(2)NTBPP) or its N2-position methylated analogue H(CH(3))NTBPP in refluxing 1,2,4-trichlorobenzene (TCB) led to the isolation of M(III)(Pc)(HNTBPP) (M = La, Eu, Y, Lu) or Y(III)(Pc)[(CH(3))NTBPP] in 8-15% yield. These represent the first examples of sandwich-type rare earth complexes with N-confused porphyrinato ligands. The complexes were characterized with various spectroscopic methods and elemental analysis. The molecular structures of four of these double-decker complexes were also determined by single-crystal X-ray diffraction analysis. In each of these complexes, the metal center is octa-coordinated by four isoindole nitrogen atoms of the Pc ligand, three pyrrole nitrogen atoms, and the inverted pyrrole carbon atom of the HNTBPP or (CH(3))NTBPP ligand, forming a distorted coordination square antiprism. For Eu(III)(Pc)(HNTBPP), the two macrocyclic rings are further bound to a CH(3)OH molecule through two hydrogen bonds formed between the hydroxyl group of CH(3)OH and an aza nitrogen atom of the Pc ring or the inverted pyrrole nitrogen atom of the HNTBPP ring, respectively. The location of the acidic proton at the inverted pyrrole nitrogen atom (N2) of the protonated double-deckers was revealed by (1)H NMR spectroscopy.  相似文献   

12.
Two bis(mu-methoxo)dichromium(III) complexes, [L(Se)(2)Cr(2)(mu-OCH(3))(2)(CH(3)OH)(2)] 1 and [L(Se)(2)Cr(2)(mu-OCH(3))(2)(CH(3)OH)(CH(3)O)](-) 2, where L(Se) represents the dianion of 2,2'-selenobis(4,6-di-tert-butylphenol), have been reported to demonstrate the effect of hydrogen bonding on the exchange coupling interactions between the chromium(III) centers. The corresponding sulfur analogue of the ligand, i.e., 2,2'-thiobis(4,6-di-tert-butylphenol), also yields the analogous [L(S)(2)Cr(2)(mu-OCH(3))(2)(CH(3)OH)(2)] 3 and [L(S)(2)Cr(2)(mu-OCH(3))(2)(CH(3)O)(CH(3)OH)](-) 4, which exhibit similar exchange coupling parameters. An acid-base dependent equilibrium between 1 and 2 or 3 and 4 has been established by electronic spectral measurements.  相似文献   

13.
The synthesis and physical characterization of oxo-bridged [Cr(2)(tmpa)(2)(&mgr;-O)(X)](n)()(+) complexes (tmpa = tris(2-pyridylmethyl)amine) containing a variety of complementary ligands (X = CO(3)(2)(-), PhPO(4)(2)(-), HS(-)) are described, with the objective of understanding factors underlying variations in the antiferromagnetic coupling constant J. We also present the crystal structure of [(tmpa)Cr(&mgr;-O)(&mgr;-CO(3))Cr(tmpa)](ClO(4))(2).2H(2)O, for comparison with previous findings on [(tmpa)Cr(&mgr;-O)(&mgr;-CH(3)CO(2))Cr(tmpa)](ClO(4))(3). The carbonate-bridged complex crystallizes in the monoclinic space group P2(1)/c with a = 11.286(10) ?, b = 18.12(2) ?, c = 20.592(12) ?, beta = 95.99(5) degrees, and V = 4190 ?(3) and Z = 4. Asymmetric tmpa ligation pertains, with apical N atoms situated trans to bridging oxo and acido O atoms. Key structural parameters include Cr-O(b) bond lengths of 1.818(6) and 1.838(6) ?, Cr-OCO(2) distances of 1.924(7) and 1.934(7) ?, and a bridging bond angle of 128.3(3) degrees. Several attempts to prepare oxo, amido-bridged dimers were unsuccessful, but the nearlinear [Cr(tmpa)(N(CN)(2))](2)O(ClO(4))(2).3H(2)O complex was isolated from the reaction of dicyanamide ion with [Cr(tmpa)(OH)](2)(4+). In contrast to the behavior of analogous diiron(III) complexes, antiferromagnetic coupling constants of [Cr(2)(tmpa)(2)(&mgr;-O)(X)](n)()(+) dinuclear species are highly responsive to the X group. Considering the complexes with X = CO(3)(2)(-), PhPO(4)(2)(-), HS(-), SO(4)(2)(-), and RCO(2)(-) (10 R substituents), we find a reasonably linear, empirical relationship between J and oxo bridge basicity, as measured by pK(a) (Cr(OH)Cr) values in aqueous solution. While there is no theoretical basis for such a correlation between solid-state and solution-phase properties, this relationship demonstrates that CrOCr pi-bonding contributes significantly to antiferromagnetic exchange. Thus, J tends to become less negative with increasing &mgr;-O(2)(-) basicity, showing that greater availability of a bridging oxo group lone pair toward the proton, with decreasing CrOCr pi-interaction, reduces the singlet-triplet gap.  相似文献   

14.
Heteronuclear cationic complexes, [LCuLn]3+ and [(LCu)2Ln]3+, were employed as nodes in designing high-nuclearity complexes and coordination polymers with a rich variety of network topologies (L is the dianion of the Schiff base resulting from the 2:1 condensation of 3-methoxysalycilaldehyde with 1,3-propanediamine). Two families of linkers have been chosen: the first consists of exo-dentate ligands bearing nitrogen-donor atoms (bipyridine (bipy), dicyanamido (dca)), whereas the second consists of exo-dentate ligands with oxygen-donor atoms (anions derived from the acetylenedicarboxylic (H2acdca), fumaric (H2fum), trimesic (H3trim), and oxalic (H2ox) acids). The ligands belonging to the first family prefer copper(II) ions, whereas the ligands from the second family interact preferentially with oxophilic rare-earth cations. The following complexes have been obtained and crystallographically characterized: [LCu(II)(OH2)Gd(III)(NO3)3] (1), [{LCu(II)Gd(III)(NO3)3}2(mu-4,4'-bipy)] (2), 1infinity[LCu(II)Gd(III)(acdca)(1.5)(H2O)2].13H2O (3), 2infinity[LCu(II)Gd(III)(fum)(1.5)(H2O)2].4H2O.C2H5OH (4), 1infinity[LCu(II)Sm(III)(H2O)(Hfum)(fum)] (5), 1infinity[LCu(II)Er(III)(H2O)2(fum)]NO3.3H2O (6), 2infinity[LCu(II)Sm(III)(fum)(1.5)(H2O)2].4H2O.C2H5OH (7), [{(LCu(II))2Sm(III)}2fum2](OH)2 (8), 1infinity[LCu(II)Gd(III)(trim)(H2O)2].H2O (9), 2infinity[{(LCu(II))2Pr(III)}(C2O4)(0.5)(dca)]dca.2H2O (10), [LCu(II)Gd(III)(ox)(H2O)3][Cr(III)(2,2'-bipy)(ox)2].9H2O (11), and [LCuGd(H2O)4{Cr(CN)6}].3H2O (12). Compound 1 is representative of the whole family of binuclear Cu(II)-Ln(III) complexes which have been used as precursors in constructing heteropolymetallic complexes. The rich variety of the resulting structures is due to several factors: 1) the nature of the donor atoms of the linkers, 2) the preference of the copper(II) ion for nitrogen atoms, 3) the oxophilicity of the lanthanides, 4) the degree of deprotonation of the polycarboxylic acids, 5) the various connectivity modes exhibited by the carboxylato groups, and 6) the stoichiometry of the final products, that is, the Cu(II)/Ln(III)/linker molar ratio. A unique cluster formed by 24 water molecules was found in crystal 11. In compounds 2, 3, 4, 9, and 11 the Cu(II)-Gd(III) exchange interaction was found to be ferromagnetic, with J values in the range of 3.53-8.96 cm(-1). Compound 12 represents a new example of a polynuclear complex containing three different paramagnetic ions. The intranode Cu(II)-Gd(III) ferromagnetic interaction is overwhelmed by the antiferromagnetic interactions occurring between the cyanobridged Gd(III) and Cr(III) ions.  相似文献   

15.
16.
The present study focuses on the formation and reactivity of hydroperoxo-iron(III) porphyrin complexes formed in the [Fe(III)(tpfpp)X]/H(2)O(2)/HOO(-) system (TPFPP=5,10,15,20-tetrakis(pentafluorophenyl)-21H,23H-porphyrin; X=Cl(-) or CF(3) SO(3)(-)) in acetonitrile under basic conditions at -15 °C. Depending on the selected reaction conditions and the active form of the catalyst, the formation of high-spin [Fe(III)(tpfpp)(OOH)] and low-spin [Fe(III)(tpfpp)(OH)(OOH)] could be observed with the application of a low-temperature rapid-scan UV/Vis spectroscopic technique. Axial ligation and the spin state of the iron(III) center control the mode of O-O bond cleavage in the corresponding hydroperoxo porphyrin species. A mechanistic changeover from homo- to heterolytic O-O bond cleavage is observed for high- [Fe(III)(tpfpp)(OOH)] and low-spin [Fe(III)(tpfpp)(OH)(OOH)] complexes, respectively. In contrast to other iron(III) hydroperoxo complexes with electron-rich porphyrin ligands, electron-deficient [Fe(III)(tpfpp)(OH)(OOH)] was stable under relatively mild conditions and could therefore be investigated directly in the oxygenation reactions of selected organic substrates. The very low reactivity of [Fe(III)(tpfpp)(OH)(OOH)] towards organic substrates implied that the ferric hydroperoxo intermediate must be a very sluggish oxidant compared with the iron(IV)-oxo porphyrin π-cation radical intermediate in the catalytic oxygenation reactions of cytochrome P450.  相似文献   

17.
Intermediates of chromium-salen catalyzed alkene epoxidations were studied in situ by EPR, (1)H and (2)H NMR, and UV-vis/NIR spectroscopy (where chromium-salens were (S,S)-(+)-N,N'-bis(3,5-di-tert-butylsalicylidene)-1,2-cyclohexanediamino chromium(III) chloride (1) and racemic N,N'-bis(3,4,5,6-tetra-deuterosalicylidene)-1,2-cyclohexanediamino chromium(III) chloride (2)). High-valence chromium complexes, intermediates of epoxidation reactions, were detected and characterized by EPR and NMR. They are the reactive mononuclear oxochromium(V) intermediate (A) Cr(V)O(salen)L (where L = Cl(-) or a solvent molecule) and an inactive chromium-salen binuclear complex (B) which acts as a reservoir of the active species. The latter complex demonstrates an EPR signal characteristic of oxochromium(V)-salen species and (1)H NMR spectra typical for chromium(III)-salen complexes, and it is identified as mixed-valence binuclear L(1)(salen)Cr(III)OCr(V)(salen)L(2) (L(1), L(2) = Cl(-) or solvent molecules). The intermediates Cr(V)O(salen)L and L(1)(salen)Cr(III)OCr(V)(salen)L(2) exist in equilibrium, and their ratio can be affected by addition of donor ligands (DMSO, DMF, H(2)O, pyridine). Addition of donor additives increases the fraction of A over that of B. The same two complexes can be obtained with m-CPBA as oxidant. Reactivities of the Cr(V)O(salen)L complexes toward E-beta-methylstyrene were measured in DMF. The L(1)(salen)Cr(III)OCr(V)(salen)L(2) intermediate has been proposed to be a reservoir of the true reactive chromium(V) species. The chromium-salen catalysts demonstrate low turnover numbers (ca. 5), probably due to ligand degradation processes.  相似文献   

18.
Stopped-flow kinetic studies of the oxidation of Fe(III)-TAML catalysts, [ F e{1,2-X(2)C(6)H(2)-4,5-( NCOCMe(2) NCO)(2)CMe(2)}(OH(2))](-) (1), by t-BuOOH and H(2)O(2) in water affording Fe(IV) species has helped to clarify the mechanism of the interaction of 1 with primary oxidants. The data collected for substituted Fe(III)-TAMLs at pH 6.0-13.8 and 17-45 °C has confirmed that the reaction is first order both in 1 and in peroxides. Bell-shaped pH profiles of the effective second-order rate constants k(I) have maximum values in the pH range of 10.5-12.5 depending on the nature of 1 and the selected peroxide. The "acidic" part is governed by the deprotonation of the diaqua form of 1 and therefore electron-withdrawing groups move the lower pH limit of the reactivity toward neutral pH, although the rate constants k(I) do not change much. The dissection of k(I) into individual intrinsic rate constants k(1) ([FeL(OH(2))(2)](-) + ROOH), k(2) ([FeL(OH(2))OH)](2-) + ROOH), k(3) ([FeL(OH(2))(2)](-) + ROO(-)), and k(4) ([FeL(OH(2))OH)](2-) + ROO(-)) provides a model for understanding the bell-shaped pH-profiles. Analysis of the pressure and substituent effects on the reaction kinetics suggest that the k(2) pathway is (i) more probable than the kinetically indistinguishable k(3) pathway, and (ii) presumably mechanistically similar to the induced cleavage of the peroxide O-O bond postulated for cytochrome P450 enzymes. The redox titration of 1 by Ir(IV) and electrochemical data suggest that under basic conditions the reduction potential for the half-reaction [Fe(IV)L(=O)(OH(2))](2-) + e(-) + H(2)O → [Fe(III)L(OH)(OH(2))](2-) + OH(-) is close to 0.87 V (vs NHE).  相似文献   

19.
Levina A  Turner P  Lay PA 《Inorganic chemistry》2003,42(17):5392-5398
X-ray absorption spectroscopy (XAS) provides a direct means of solving the controversy on Cr oxidation states in nitroso complexes. The first XAS studies of four known Cr-NO complexes, [Cr(NO)(OH(2))(5)](2+), [Cr(NO)(acac)(2)(OH(2))], [Cr(NO)(CN)(5)](3)(-), and [Cr(NO)(NCS)(5)](3)(-), have been performed, in comparison with the related Cr(III) complexes, [Cr(OH(2))(6)](3+), [Cr(acac)(3)], [Cr(CN)(6)](3)(-), and [Cr(NCS)(6)](3)(-). The X-ray absorption near-edge structure (XANES) spectra of the Cr-NO complexes are distinguished from those of the corresponding Cr(III) complexes by increased intensities of pre-edge absorbancies due to the 1s --> 3d transition, as well as with slight shifts (by 0.2-1.0 eV) of the edge positions to lower energies, with no major changes in the edge shape. These features, together with the available structural data on Cr-NO complexes, show that the effective Cr oxidation states in such complexes are close to Cr(III), due to the pi-back-bonding within the Cr-NO moiety. Multiple-scattering fitting of X-ray absorption fine structure (XAFS) spectra of [Cr(NO)(acac)(2)(OH(2))] supported the assignment of this complex as a trans-isomer (Keller, A.; Jezovska-Trzebiatowska, B. Polyhedron 1985, 4, 1847-1852). The first crystal structure of a Cr nitroso-isothiocyanato complex, (Ph(4)P)(3)[Cr(NO)(NCS)(5)].2.4(CH(3))(2)CO, has been determined.  相似文献   

20.
The oxidation state of the chromium center in the following compounds has been probed using a combination of chromium K-edge X-ray absorption spectroscopy and density functional theory: [Cr(phen)(3)][PF(6)](2) (1), [Cr(phen)(3)][PF(6)](3) (2), [CrCl(2)((t)bpy)(2)] (3), [CrCl(2)(bpy)(2)]Cl(0.38)[PF(6)](0.62) (4), [Cr(TPP)(py)(2)] (5), [Cr((t)BuNC)(6)][PF(6)](2) (6), [CrCl(2)(dmpe)(2)] (7), and [Cr(Cp)(2)] (8), where phen is 1,10-phenanthroline, (t)bpy is 4,4'-di-tert-butyl-2,2'-bipyridine, and TPP(2-) is doubly deprotonated 5,10,15,20-tetraphenylporphyrin. The X-ray crystal structures of complexes 1, [Cr(phen)(3)][OTf](2) (1'), and 3 are reported. The X-ray absorption and computational data reveal that complexes 1-5 all contain a central Cr(III) ion (S(Cr) = (3)/(2)), whereas complexes 6-8 contain a central low-spin (S = 1) Cr(II) ion. Therefore, the electronic structures of 1-8 are best described as [Cr(III)(phen(?))(phen(0))(2)][PF(6)](2), [Cr(III)(phen(0))(3)][PF(6)](3), [Cr(III)Cl(2)((t)bpy(?))((t)bpy(0))], [Cr(III)Cl(2)(bpy(0))(2)]Cl(0.38)[PF(6)](0.62), [Cr(III)(TPP(3?-))(py)(2)], [Cr(II)((t)BuNC)(6)][PF(6)](2), [Cr(II)Cl(2)(dmpe)(2)], and [Cr(II)(Cp)(2)], respectively, where (L(0)) and (L(?))(-) (L = phen, (t)bpy, or bpy) are the diamagnetic neutral and one-electron-reduced radical monoanionic forms of L, and TPP(3?-) is the one-electron-reduced doublet form of diamagnetic TPP(2-). Following our previous results that have shown [Cr((t)bpy)(3)](2+) and [Cr(tpy)(2)](2+) (tpy = 2,2':6',2"-terpyridine) to contain a central Cr(III) ion, the current results further refine the scope of compounds that may be described as low-spin Cr(II) and reveal that this is a very rare oxidation state accessible only with ligands in the strong-field extreme of the spectrochemical series.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号